Практические схемы высококачественного звуковоспроизведения


Скачать 1.86 Mb.
Название Практические схемы высококачественного звуковоспроизведения
страница 5/17
Тип Документы
rykovodstvo.ru > Руководство эксплуатация > Документы
1   2   3   4   5   6   7   8   9   ...   17

Рис. 27. Принципиальная схема корректора на дискретных элементах по схемо­технике ОУ



При испытаниях усилителя следует использовать двухполярный стабилизи­рованный источник питания с выходным напряжением ±15 В. Если монтаж выполнен правильно и элементы исправны, устройство работает без настройки и обеспечивает приведенные характеристики.



Рис. 28. Печатная (а) и монтажная (б) платы корректора на дискретных элемен­тах по схемотехнике ОУ
Высококачественный корректор на усилителе с параллельной обратной связью. Известно, что применение параллельной обратной связи по напряже­нию формирует источник напряжения (выходное полное сопротивление кото­рого близко к нулю). Это позволяет строить усилитель с хорошими нагрузоч­ными характеристиками. Следует отметить, что усилитель с параллельной ОС также имеет лучшую, по сравнению с последовательной, переходную характе­ристику. Корректоры, построенные на базе усилителей с параллельной ОС, при простых схемных решениях позволяют получить довольно высокие техни­ческие характеристики.

Высококачественный корректор на усилителе с параллельной обратной связью имеет следующие основные технические характеристики:
Максимальное входное напряжение . ....... 40 мВ

Максимальное выходное напряжение........ 4В

Перегрузочная способность .......... 24 дБ

Коэффициент усиления на частоте 1 кГц....... 100

Отклонение АЧХ от стандартной......... ±0,5 дБ

Отношение сигнал-шум (невзвешенное) . . . . . . . 70 дБ

Коэффициент гармоник, не более ......... 0,01%

Напряжение питания............ ±15 В

Ток потребления.............. 10 мА
На рис. 29 приведена схема этого корректора. Он состоит из входного кас­када на транзисторах VT1VT3 и двухтактного выходного каскада (транзи­сторы VT4VT7), работающего в режиме А. Входной каскад для получения максимального усиления выполнен по каскодной схеме на транзисторах VT2, VT3, с источником тока на полевом транзис­торе VT1 в качестве его нагрузки. Усиление такого каскада на частоте 100 Гц составляет около 50 000, что дает возможность вводить глубокую ООС, умень­шающую искажение сигнала. Для согласования с нагрузкой используется двухтактный выходной каскад (транзисторы VT4, VT6 и VT5, VT7). Выходная мощность каскада оказывается достаточной для непосредственного подключения головных телефонов. В данном случае в качестве нагрузки можно использовать высокоомные головные телефоны, например, ТДС-5. В этом случае уровень громкости регулируют резистором R15. Необходимую частотную характеристику формируют цепи R5C5 и R8C6.


Рис. 29. Принципиальная схема корректора с параллельной обратной связью



Печатная плата корректора (рис. 30) рассчитана на монтаж двух коррек­торов. Резисторы R2 и R11 — СПЗ-22, R15 — СПЗ-12а с экспоненциальной зависи­мостью сопротивления от угла поворота движка.

Первоначально, устанавливая резистором R11 на положительной обкладке конденсатора С8 напряжение +7,5 В, необходимо сбалансировать корректор, Затем резистором R2 нужно добиться, чтобы коллекторный ток выходных тран­зисторов был равен 10 мА. После этого повторно проверить баланс и, если не­обходимо, вновь подстроить К.11. На этом налаживание заканчивается. Для питания корректоров во время налаживания следует использовать стабилизи­рованный источник, обеспечивающий при напряжении 15 В ток не менее 100 мА.



Рис. 30. Печатная (а) и монтажная (б) платы усилителя с параллельной обратной связью.

МИКРОФОННЫЕ УСИЛИТЕЛИ


Микрофонные усилители предназначены для усиления слабых сиг­налов микрофона и согласования его с последующими усилительными каска­дами звуковоспроизводящего тракта. Коэффициент усиления микрофонного уси­лителя выбирают таким образом, чтобы обеспечить на входе основного усили­теля номинальный уровень напряжения от 200 до 400 мВ. При необходимости в микрофонный усилитель вводят частотную коррекцию, чтобы компенсировать неравномерность АЧХ используемого микрофона.

Особенностями микрофонного усилителя являются: работа при малых уров­нях входного сигнала (номинальная ЭДС, развиваемая разными типами микро­фонов, составляет 0,1... 0,8 мВ); совместная работа с источником сигнала, име­ющим низкое внутреннее сопротивление (500 ... 2000 Ом), которое остается по­стоянным в широком диапазоне рабочих частот.

Основные сложности при разработке микрофонных усилителей связаны о достижением низкого уровня собственных шумов и минимальных нелинейных искажений. Формирование необходимой АЧХ особых трудностей не представ­ляет.

Собственные (внутренние) шумы применяемых в высококачественной звуке-технике электростатических (конденсаторных) и электродинамических (ленточ­ных) микрофонов незначительны. Так, шумы электродинамических микрофонов очень малы и, как правило, не нормируются. Конденсаторные микрофоны име­ют сравнительно более высокий уровень шумов, обычно указываемый в пас­порте микрофона. Но даже для конденсаторных микрофонов уровень собствен­ных шумов не превышает нескольких микровольт. Поэтому важно, чтобы соб­ственные шумы микрофонного усилителя были малы.

Как известно, для достижения малого уровня шумов на выходе усилителя необходимо уменьшать собственные шумы первого каскада и увеличивать по­лезный сигнал на его входе. Поскольку шумовые свойства усилительного кас­када зависят от внутреннего сопротивления источника сигнала, при выборе режима работы транзистора в первом каскаде микрофонного усилителя необхо­димо учитывать внутреннее сопротивление микрофона. Например, для транзи­стора КТ3102 оптимальный коллекторный ток, при котором коэффициент шума минимален, составляет 100... 300 мкА при сопротивлении источника сигнала 1 кОм и 30... 60 мкА при сопротивлении 10... 100 кОм.

По рекомендации Международной Электротехнической Комиссии номиналь­ное входное сопротивление микрофонного усилителя, обеспечивающее наилуч­шее отношение сигнал-шум на его выходе, равно утроенному сопротивлению микрофона (Rвх = 3Rмк). В описанных далее конструкциях входное сопротив­ление усилителя 3,3 кОм, что является компромиссным решением для различ­ных типов применяемых микрофонов.

Номинальный диапазон частот микрофонного усилителя с учетом АЧХ используемого микрофона должен быть не хуже 20 Гц... 20 кГц при нерав­номерности ±2 дБ. Невзвешенное значение отношения сигнал-шум достаточно иметь примерно равным 60 дБ. Запас по перегрузочной способности (относи­тельно номинальной чувствительности) должен быть не менее 30 дБ. Коэффи­циент гармоник в полосе частот должен составлять не более 0,1...0,2%. Авто­матическая регулировка усиления, значительно сужающая динамический диа­пазон и используемая, как правило, в специальных усилителях (для усиления речи и т. п.), в рассматриваемых далее микрофонных усилителях не применя­ется.

Микрофонные усилители имеют следующие параметры:

максимальное входное напряжение [мВ] — наибольшее действующее значе­ние синусоидального входного сигнала на частоте 1 кГц, при котором коэф­фициент гармоник выходного напряжения не превышает 0,5%;

максимальное выходное напряжение [В] — наибольшее действующее зна­чение выходного напряжения на частоте 1 кГц при коэффициенте гармоник не более 0,5%;

перегрузочная способность, Кп [дБ] — отношение максимального входного напряжения к номинальному входному;

коэффициент гармоник [%] — наибольшее значение коэффициента нелиней­ных искажений выходного сигнала, измеряемое в полосе частот 20... 20 000 Гц при номинальном выходном напряжении;

отношение сигнал-шум (невзвешенное) [дБ] — отношение действующего значения номинального напряжения выходного синусоидального сигнала к дей­ствующему значению напряжения шума на выходе усилителя (измеряется без взвешивающих фильтров);

номинальный диапазон [Гц] — диапазон частот, внутри которого нормиро­ванная АЧХ усилителя имеет неравномерность не более ±1,5 дБ.

Для всех приводимых далее микрофонных усилителей номинальный уро­вень входных сигналов равен 1 мВ, выходное сопротивление не превышает 1 кОм, что обеспечивает хорошее их согласование с узлами, описанными далее,

Микрофонный усилитель на микросхеме К548УН1. Наиболее просто тре­буемые характеристики микрофонного усилителя можно реализовать на основе микросхем. Специально спроектированная для звуковой техники микросхема К548УН1 позволяет легко получить требуемые параметры при небольшом числе внешних элементов. Микрофонный усилитель на этой микросхеме имеет следу­ющие основные технические характеристики:
Входное напряжение:

номинальное............ 1 мВ

максимальное............ 30 мВ

Выходное напряжение:

номинальное............ 200 мВ

максимальное............ 6000 мВ

Перегрузочная способность, не менее ...... 30 дБ

Коэффициент гармоник, не более....... 0,2%

Отношение сигнал-шум (невзвешенное)..... 60 дБ

Номинальный диапазон частот........ 20 ... 20 000 Гц

Напряжение питания........... 24 В

Ток потребления............ 10 мА
Схема одного канала этого усилителя приведена на рис. 31. Микросхема DA1 включена по схеме неинвертирующего усилителя. Отрицательная обратная связь по постоянному току (через резисторы R3, R4) определяет режим рабо­ты микросхемы. Усиление по переменному току определяется соотношением резисторов R2 и R4. Для уменьшения уровня шума (примерно в 1,4 раза) ис­пользуется только один из транзисторов входного дифференциального каскада

микросхемы, база второго (вы­вод 2 микросхемы DA1) соедине­на с общим проводом.

Конденсаторы С1 и С4 служат для развязки по пос­тоянному току источника сиг­нала и нагрузки, С5 устраняет паразитную связь по цепи пита­ния.

Микрофонный усилитель соб­ран на унифицированной мон­тажной плате методом объемного монтажа. В устройстве использу­ют резисторы МЛТ-0,125, конденсаторы КМ-4, КМ-б, К50-6. Чертеж унифицированной монтажной платы при­веден на рис. 32.



Рис. 31. Принципиальная схема микрофон­ного усилителя на микросхеме К548УН1



Рис. 32. Чертеж унифицированной монтажной платы
Для проверки усилителя необходим стабилизированный источник питания с выходным напряжением 24 В, обеспечивающий ток в нагрузке не менее 15 мА, Если монтаж выполнен правильно, а детали исправны, усилитель работает практически без настройки.

Микрофонный усилитель на микросхеме К153УД2. При отсутствии специ­альных микросхем (К548УН1А, К157УЛ1) для микрофонного усилителя вполне можно использовать ОУ на микросхеме К153УД2 общего применения. При этом ухудшится только отношение сигнал-шум, а остальные параметры оста­нутся практически без изменений или даже несколько улучшатся.

Такой микрофонный усилитель имеет следующие основные технические ха­рактеристики:
Входное напряжение:

номинальное............ It5 мВ

максимальное............ 3000 мВ

Выходное напряжение:

номинальное............ 220 мВ

максимальное............ 9000 мВ

Перегрузочная способность, не менее...... 66 дБ

Коэффициент гармоник, не более....... О gg%

Отношение сигнал-шум (невзвешенное)...... 55 дБ

Номинальный диапазон частот........ 20... 20 000 Гц

Напряжение питания.......... ± l5 В

Ток потребления............ J2 мА
На рис. 33 показан усилитель, включенный по схеме инвертирующего уси­лителя. Неинвертирующий вход (вывод 3) микросхемы DA1 подключен к об­щему проводу, а на инвертирующий (вывод 2} подается ООС, раздельно по постоянному и переменному токам. Отрицательная обратная связь по постоян­ному току (через резистор R4) стабилизирует рабочую точку усилителя. Ре­гулируемая ООС по переменному току (цепь R3, С2) обеспечивает нормальное функционирование усилителя, предохраняет его от перегрузки по входу. Если движок резистора R3 находится в крайнем левом по схеме положении, входное напряжение может достигать 3 В и при этом еще не наступает ограничение сигнала на выходе. При максимальном усилении (движок R3 в крайнем пра­вом положении) ограничение вы­ходного напряжения наступает при входном напряжении около 20 мВ.

Конденсаторы С1 и С4 обес­печивают развязку по постоянно­му току на входе и выходе уз­ла, С5 и С6 устраняют паразит­ную связь по цепи питания.

Для монтажа микрофонного усилителя использованы унифи­цированная монтажная плата (см. рис. 32), резисторы МЛТ-0,125, СПЗ-12 или СПЗ-23 {R3), кон­денсаторы КМ-4, КМ-б, К53-1.



Рис. 33. Принципиальная схема микрофон­ного усилителя на микросхеме К153УД2
Вместо микросхемы К.153УД2 можно использовать и другие ОУ общего при­менения с соответствующими цепями коррекции (К153УД1, К.140УД7, К140УД8 и т. п.).

Для работы усилителя необходим стабилизированный двухполярный ис­точник питания с напряжением +15 В, обеспечивающий ток в нагрузке не ме­нее 15 мА. При правильно выполненном монтаже и исправных деталях узел работает без настройки.

Микрофонный усилитель на ОУ с малошумящим транзистором на входе. На ОУ общего применения можно создать микрофонный усилитель, не уступа­ющий по параметрам усилителю, построенному на базе специализированной микросхемы. Однако шумовые свойства такого усилителя получаются невысо­кими. Для уменьшения уровня шума, как и в случае предусилителя-корректо-ра, на входе микросхемы можно установить малошумящий транзистор.

Микрофонный усилитель, сочетающий усилительные возможности ОУ и шумовые характеристики дискретного транзистора, приведен на рис. 34. Он имеет следующие основные технические характеристики:
Входное напряжение:

номинальное............ 1 мВ

максимальное............ 45 мВ

Выходное напряжение:

номинальное . . . ......... 200 мВ

максимальное............ 9000 мВ

Перегрузочная способность, не менее...... 33 дБ

Коэффициент гармоник, не более ....... 0,06%

Отношение сигнал-шум (невзвешенное)..... 6G дБ

Номинальный диапазон частот........ 20 ... 20 000 Гц

Напряжение питания.......... ±15 В

Ток потребления............ 15 мА
Усилитель может работать как с низкоомным, так и с высокоомным мик­рофоном. Входной каскад на малошумящем транзисторе VT1 питается от па­раметрического стабилизатора напряжения (стабилитрон VD1, резистор R10), который одновременно обеспечивает необходимую фильтрацию пульсаций пи­тающего напряжения. Для защиты от помех мощных радиостанций сигнал на базу транзистора VT1 поступает через фильтр нижних частот R4C2 с частотой среза около 3 МГц. Режим работы транзистора стабилизирован глубокой ООС по постоянному току (с выхода микросхемы DA1 через резистор R11 в цепь эмиттера транзистора VT1). Необходимый коэффициент усиления (5... 300) устанавливают подстроечным резистором R7. Благодаря большому запасу уси­ления и глубокой ООС коэффициент гармоник не превышает сотых долей процента, а АЧХ усилителя линейна во всем звуковом диапазоне.

Монтаж микрофонного усилителя производят на унифицированной мон­тажной плате методом объемного монтажа (см. рис. 32). Вместо транзистора КТ3102Е можно использовать КТ3102В, К.Т315Б, вместо микросхемы К153УД2 — К153УД1, К140УД7, К140УД8 и другие с соответствующими цепя­ми коррекции. Резисторы — МЛТ-0,125, СПЗ-22(R7), конденсаторы — КМ-4, КМ-6, К53-1.



Рис. 34. Принципиальная схема микрофонного усилителя на ОУ
Налаживание заключается в проверке правильности монтажа и установке подстроечным резистором R7 необходимого усиления. Для этого, подключив стабилизированный источник напряжением ±15 В, обеспечивающий ток в на­грузке не менее 20 мА, на вход узла с генератора звуковой частоты подают сигнал частотой 1 кГц и напряжением 1 мВ. Подстроечным резистором R7 на­пряжение на выходе микрофонного усилителя устанавливают в пределах 200... 250 мВ.

ФИЛЬТРЫ


Частотная характеристика высококачественных усилителей 34 прости­рается от единиц герц до сотни килогерц, что обеспечивает очень малые линей­ные искажения. Но это же обстоятельство приводит к усилению таких неже­лательных явлений, как прохождение помех от близлежащих радиостанций, усиление гармоник ограниченного сигнала и остаточных напряжений УПЧ приемника, помех от вибраций двигателя электрофона, напряжения фона от сети и т. п. Поэтому необходимо, чтобы звуковой сигнал, проходящий через высококачественный звуковоспроизводящий тракт, был очищен от всех сопут­ствующих помех.

Для этой цели в состав звуковоспроизводящего тракта вводятся специаль­ные фильтры нижних (ФНЧ) и верхних (ФВЧ) частот. Их задача — обеспе­чить эффективное подавление составляющих фона, шумов и паразитных сиг­налов в той части диапазона, где отсутствуют составляющие полезного сиг­нала.

К важнейшим показателям, характеризующим свойства фильтров, как и других функциональных узлов звуковоспроизводящего тракта, относятся: вели­чина, характеризующая способность фильтра усиливать сигнал; степень вноси­мых фильтром искажений; динамический диапазон; входные и выходные дан­ные.

Фильтры характеризуются параметрами, аналогичными принятым для мик­рофонных усилителей. И, кроме того, еще двумя специфичными показателями — частотой среза и крутизной спада АЧХ.

Частота среза [Гц] — точка перегиба АЧХ фильтра, в которой коэффициент передачи изменяется на 3 дБ. Для фильтров, построенных на однозвенных RG цепях, частота среза

fср=1/(2пRС).

Крутизна спада АЧХ характеризует скорость спада АЧХ фильтра от точки перегиба. Обычно она измеряется в децибелах на октаву.



Рис. 35. Электрическая схема фильтра низких (а) и высоких (б) частот
Амплитуда на выходе RC фильтра убывает от точки перегиба пропорцио­нально 1/f. Поэтому в пределах одной октавы (соответствует изменению час­тоты вдвое) она уменьшается вдвое, т. е. RC фильтр обеспечивает крутизну спада АЧХ 6 дБ на октаву. Если последовательно включить два RC звена, кру­тизна возрастает до 12 дБ на октаву, если три — до 18 и т. д. Однако это справедливо при условии, когда реактивная составляющая полного, выходного сопротивления каждого RC звена равна нулю, а входного — бесконечности.

Один из способов устранения взаимного влияния каскадов состоит в том, чтобы каждый последующий каскад имел значительно большее полное вход­ное сопротивление, чем предыдущий. Еще эффективнее использовать в качестве межкаскадных буферов активные фильтры на транзисторах или ОУ.

Полосовой фильтр на пассивных элементах. На рис. 35,а показан ФНЧ на основе Г-образного RC полузвена. Напряжение на выходе такого фильтра не­изменно от самых нижних частот до частоты среза fcp; f0p = 1/(2пR1C1). При дальнейшем увеличении частоты выходное напряжение уменьшается пропор­ционально 1/f, т. е. с крутизной около 6 дБ на октаву. Как отмечалось, па­раметры пассивных RC фильтров весьма критичны к сопротивлению нагрузки Rн и источника сигнала Rг. Расчетные характеристики фильтров достигаются при сопротивлении нагрузки Ra, стремящемся к бесконечности и сопротивлении источника сигнала Rr, стремящемся к нулю. Точный расчет фильтров с учетом конечных значений Ra и 7?г довольно громоздок, но для приближенных расчетов частоты среза можно воспользоваться и приведенной ранее формулой.

Практически достаточно, чтоб выполнялись соотношения:

Rи = (10... 20) R1, Rг = (0,05 ..,0,1) R1.

Если в схеме на рис. 35,а поменять местами резистор и конденсатор, то получается RC ФВЧ (рис. 35,6). В отличие от ФНЧ, ФВЧ пропускает ча­стоты выше частоты среза fcp, ниже этой частоты АЧХ имеет спад с на­клоном 6 дБ на октаву. Соединяя каскадно ФВЧ и ФНЧ, можно построить полосовой фильтр.

Практическая схема полосового фильтра показана на рис. 36. Он имеет следующие основные технические характеристики:

Входное напряжение:

номинальное............ 0,2 В

максимальное............ 4В

Выходное напряжение:

номинальное............ 0,16 В

максимальное............ 3,2 В

Коэффициент передачи в полосе пропускания .... 0,8

Перегрузочная способность, не менее...... 26 дБ

Частота среза............ 0,1 и 7 кГц

Крутизна спада АЧХ........... 6 дБ на октаву

Коэффициент гармоник, не более....... 0,08%

Отношение сигнал-шум (невзвешенное)..... 70 дБ

Напряжение питания........... 15 В

Ток потребления............ 3 мА



Рис. 36. Принципиальная схема низкочастотного и высокочастотного фильтров на пассивных элементах
Фильтр нижних частот (его включают кнопкой SB1) с частотой среза около 7 кГц состоит из резистора R1 и конденсатора С1. Для уменьшения влияния входного сопротивления последующих каскадов на параметры фильтра используется эмиттерный повторитель на транзисторе VT1, входное сопротив-, ление которого с учетом делителя R2, R3 образует нагрузку фильтра. Фильтр верхних частот с частотой среза около 100 Гц образован конденсатором С2 и входным сопротивлением каскада на транзисторе VT1. Его включают кнопкой SB2. Конденсаторы СЗ и С4 используются для развязки по постоянному току каскада на транзисторе VT1.

Поскольку сами фильтры состоят из пассивных цепей, то такие парамет­ры, как максимальное входное напряжение, коэффициент гармоник, перегру­зочная способность и т. п., определяются целиком последующими каскадами (в данном случае эмиттерным повторителем).

Полосовой фильтр собран на унифицированной монтажной плате. В нем использованы резисторы МЛТ-0,125, конденсаторы КМ-5, К53-1. Желательно, чтобы точность элементов, входящих непосредственно в фильтры (R1, C1, C2), была не хуже 2%. Вместо транзистора КТ3102В можно использовать также транзисторы КТ315, КТ342, КТ203. В качестве переключателей SВ1, SB2 по­дойдут любые на два положения, например П2К.

Для проверки работы фильтра необходим стабилизированный источник пи­тания напряжением 15 В и током не менее 5 мА. При монтаже без ошибок и «справных элементах фильтр практически работает без настройки.

Чтобы получить точное значение частот среза, поступают следующим обра­зом. В ФНЧ резистор R1 временно заменяют переменным резистором, парал­лельно С1 подключают осциллограф или вольтметр переменного тока. На вход фильтра с генератора звуковых частот подается сигнал частотой, равной fcp. Подстраивая переменный резистор, добиваются, чтобы напряжение на С1 стало равным 0,7 Uвх. После этого переменный резистор заменяют на соответствую­щий постоянный. Настройка ФВЧ производится аналогично подбором конденса­тора С2. Напряжение контролируют на выходе фильтра.

Фильтр верхних частот на ОУ К153УД2. Пассивные RC фильтры имеют значительное затухание, малую крутизну спада АЧХ, а сама АЧХ зависит от внутреннего сопротивления источника сигнала и нагрузки в пределах полосы пропускания. Для улучшения параметров RC фильтров к ним присоединяют активные элементы — транзисторы или ОУ, работающие в простейшем случае по схеме повторителя. Так как повторитель не меняет фазы входного сигнала, то пассивное RC звено включают в цепь ПОС. Этим частично компенсируют потери сигнала и повышают крутизну спада АЧХ всего фильтра.

Сопротивление резисторов и емкость конденсаторов в активных фильтрах сравнительно небольшие даже на очень низких частотах, вследствие чего кон­струкция активных фильтров получается компактной.

Фильтр верхних частот на ОУ К153УД2 имеет следующие основные техни­ческие характеристики:

Входное напряжение:
номинальное........... 0,2 В

максимальное.......... 8В

Выходное напряжение:

номинальное........... 0,19 В

максимальное.......... 7,6 В

Коэффициент передачи в полосе пропускания . . 0,95

Перегрузочная способность, не менее . . . . 32 дБ

Частота среза........... 40 и 100 Гц

Крутизна спада АЧХ......... 6 и 12 дБ на октаву

Коэффициент гармоник, не более...... 0,07%

Отношение сигнал-шум (невзвешенное) . . . . 66 дБ

Напряжение питания......... ±15В

Ток потребления . . . . ,..... 10 мА
На рис. 37 приведена схема этого ФВЧ. Он состоит из последовательно со­единенных пассивного RC ФВЧ на основе Г-образного звена C2R2 и собственно активного C3C4R3R4DA1 ФВЧ второго порядка. Такой фильтр (или фильтр Баттерворта) обладает максимально плоской АЧХ в пределах полосы пропу­скания.

При нажатии на кнопку SB1 включается пассивный RC фильтр C2R2R4 с частотой среза около 100 Гц, имеющий крутизну спада 6 дБ на октаву. На­жатие на кнопку SB2 приводит к включению активного ФВЧ. Точный расчет такого фильтра сложен, но при некоторых допущениях расчет упрощается. На­пример, принимая СЗ=С4 = С, R3=R4/2, R4 можно приближенно определить по формуле:

R4 = 0,707/(пfСР С).

В данном случае фильтр имеет частоту среза около 40 Гц. Крутизна спада его АЧХ 12 дБ на октаву. При нажатии на обе кнопки включаются пассивный и активный фильтры, при этом ниже частоты 20 Гц наклон АЧХ увеличивается до 18 дБ на октаву.



Рис. 37. Принципиальная схема высокочастотного фильтра на ОУ К153УД2
Для монтажа фильтра использована унифицированная плата. Переключа­тели SB1 и SB2 могут быть любого типа на два положения, например П2К Номиналы конденсаторов и резисторов, входящие в фильтр, должны иметь точность 2%. Вместо микросхемы К.153УД2 можно использовать любые ОУ с соответствующими цепями коррекции, например, К153УД1, К140УД7, К140УД8.

Для проверки работы фильтра необходим стабилизированный двухполяр-ный источник питания напряжением ±15 В и током не менее 10 мА. При ис­пользовании в фильтре элементов с точностью не хуже 2% настройка не тре­буется. Если такие детали подобрать не удалось, поступают следующим об­разом. Вначале, пользуясь рекомендациями по настройке полосового фильтра, настраивают пассивный RC фильтр C2R2R4 (кнопка SB1 нажата). Затем, от­ключив пассивный RC фильтр, включают активный. Подбирая конденсаторы СЗ и С4, добиваются, чтобы напряжение на выходе фильтра на частоте среза (fcp = 40 Гц) составляло 0,7 Uвх. На этом настройка заканчивается.

Фильтр нижних частот на ОУ К153УД2 (рис. 38). Он имеет следующие основные технические характеристики:
Входное напряжение:

номинальное....... . .... . . 0,2 В

максимальное.......... 8В

Выходное напряжение:

номинальное........... 0,19 В

максимальное.......... 7,6 В

Коэффициент передачи в полосе пропускания . . 0,95

Перегрузочная способность, не менее .... 32 дБ

Частота среза........... 10 и 20 кГц

Крутизна спада АЧХ......... 6 и 12 дБ на октаву

Коэффициент гармоник, не более...... 0,07%

Отношение сигнал-шум (невзвешенное) .... 66 дБ

Напряжение питания......... ±15 В

Ток потребления.......... 10 мА



Рис. 38. Принципиальная схема низкочастотного фильтра на ОУ К153УД2
Если поменять местами резисторы и конденсаторы, то ФВЧ (см. рис. 37) преобразуется в ФНЧ (рис. 38). Элементы R2, С2, С4 образуют пассивный ФНЧ с крутизной спада АЧХ 6 дБ на октаву и частотой среза около 10 кГц, а элементы R3, R4, СЗ, С4, DA1 входят в активный ФНЧ с наклоном спада АЧХ 12 дБ на октаву и частотой среза около 20 кГц. Упрощенный расчет активного фильтра можно-произвести, принимая R3=R4=R и СЗ=2С4; емкость! конденсатора С4 определяют по формуле: C4 = 0,707/(2пfCpR).

Одновременное включение активного и пассивного фильтров обеспечивает на частотах выше 20 кГц крутизну спада АЧХ фильтра 18 дБ на октаву.

Конструкция и детали в ФНЧ такие же, как и в ФВЧ на ОУ К153УД2. Фильтр налаживают в такой же последовательности, что и предыдущий фильтр. Частоты среза устанавливают, подбирая резисторы R2R4.

РЕГУЛЯТОРЫ ГРОМКОСТИ, БАЛАНСА

И РЕЖИМА «ИНТИМ»
Регуляторы громкости являются неотъемлемой частью любого звуко­воспроизводящего устройства и предназначены для регулирования уровня зву­чания акустических систем при воспроизведении звуковых сигналов. Для сте­реофонических систем обязательным является также регулятор стереобаланса, который служит для плавного изменения соотношения уровней звучания пра­вого и левого каналов, позволяя перемещать в пространстве стереозону. Не­редко в современных звуковоспроизводящих устройствах также используют режим «Интим» или « — 20 дБ», снижающий уровень сигнала скачком в 10 раз что создает большие эксплуатационные удобства (при разговоре по телефону, контрольном прослушивании, выборе музыкальных программ и т. п.).

Известно, что из-за особенностей органов слуха человека при уменьшении уровня громкости наблюдается ухудшение восприятия низших и высших зву­ковых частот. Поэтому обычно применяют тонкомпенсированные регуляторы громкости, которые одновременно с уменьшением или увеличением громкости изменяют АЧХ усилительного устройства таким образом, чтобы она соответст-; вовала широко известным кривым равной громкости [8]. Стандартизированные кривые равной громкости приводятся в рекомендациях Международной органи­зации стандартизации (ИСО).

Схемные решения регуляторов громкости и баланса базируются на резне-тивных делителях напряжения, в качестве которых используют переменные или I постоянные резисторы. К переменным резисторам предъявляют следующие тре-: бования: близость к нулю минимального регулируемого сопротивления; плавное, (без скачков) изменение сопротивления при перемещении движка резисторов с функциональной зависимостью, подчиняющейся показательному закону (группа В); отсутствие шумов и щелчков; идентичность изменения сопротивлений при их регулировании (для сдвоенных регуляторов в стереофонических системах). Пределы плавного регулирования громкости определяются диапазоном плавно­го изменения сопротивления используемых переменных резисторов. Применяе­мые в УЗЧ резисторы СПЗ-12 имеют диапазон плавного изменения до 60 дБ, СПЗ-12а-1 — до 80 дБ. Однако промышленные потенциометры не всегда удо­влетворяют перечисленным требованиям. Разбаланс сопротивлений сдвоенных переменных резисторов типов СПЗ-23, СПЗ-12, СПЗ-4, наиболее часто использу­емых для тонкомпенсированной регулировки громкости, достигает ±3 дБ, а изменение их сопротивления из-за люфта движка или оси ±6 дБ. Это приводит к разбалансу уровней сигналов в каналах стереоусилителя при регулирований громкости и к рассогласованию АЧХ, особенно заметному на малой и средней громкости.

От указанных недостатков свободен сдвоенный ступенчатый тонкомпенси­рованный регулятор громкости, построенный на дискретных резисторах и мно­гопозиционных переключателях [9]. В последние годы с развитием интеграль­ной технологии и созданием новой элементной базы получают распространение электронные регуляторы громкости и баланса на полевых транзисторах, КМОП коммутаторах, КМОП мультиплексерах, а также специальных микросхе­мах (например, К174УН12).

Кроме общепринятых характеристик для каскада регулирования специфи­ческой является глубина регулирования громкости — отношение номинального выходного напряжения к напряжению на выходе при положении регулятора громкости, соответствующем минимальной громкости в пределах плавной регу­лировки, выраженное в децибелах.

Рассмотрим варианты схем регулировки громкости и баланса с применени­ем различной элементной базы.

Типовой каскад регулирования громкости и баланса на переменных рези­сторах групп В и А. В качестве простейшего регулятора громкости может слу­жить обычный переменный резистор, включенный по схеме делителя напряже­ния. Однако некоторые особенности слухового восприятия звуковых давлений-различных частот требуют усложнения этого каскада в усилителях высокого класса. Чувствительность уха, максимальная на средних частотах, падает нг низших и высших частотах. При увеличении уровня громкости чувствитель­ность уха в области низших частот заметно возрастает. В области высших ча­стот чувствительность также возрастает, но ее рост значительно зависит от ин­дивидуальных особенностей слуха каждого человека (особенно заметна зави­симость восприятия высших частот от возраста).

Иначе говоря, изменение уровня звукового давления вызывает изменение спектра сигнала, воспринимаемого человеком. Поэтому, чтобы субъективное восприятие громкости изменялось во всем спектре частот пропорционально, не­обходимо скорректировать частотную характеристику регулятора громкости (ввести так называемую тонкомпенсацию) таким образом, чтобы с уменьшени­ем уровня звукового давления увеличивался подъем в области низших и выс­ших частот. Кроме того, желательно равномерно изменять относительную гром­кость при линейном перемещении регулирующего узла. Из экспериментов из­вестно [10], что субъективное ощущение приращения громкости зависит от уровня звукового давления. При малых уровнях сигнала одинаковому прираще­нию звукового давления субъективно соответствует большее приращение громко­сти, чем при больших уровнях сигнала. Поэтому для получения равномерной субъективной регулировки громкости требуется нелинейное регулирование зву­кового давления. Этим требованиям отвечают переменные резисторы с показа­тельной зависимостью( группы В), имеющие отводы для тонкомпенсации.

При регулировке стереобаланса, чтобы сохранить постоянство общего зву­кового давления в обоих каналах, ослабление уровня сигнала в одном канале необходимо компенсировать увеличением уровня сигнала в другом. Для этога можно использовать широко распространенные переменные резисторы с линейной зависимостью (группы А). Применение специально разработанных для регулировка стереобаланса потенциометров с зависимостью (группы Е/И) позволяет умень­шить потери сигнала и субъективно более плавно регулировать стереобаланс.



Рис. 39. Принципиальная схема регуляторов громкости и баланса на потенцио­метрах типа В и А
На рис. 39 приведена схема регулятора громкости, в которой учтены сде­ланные замечания. Он имеет следующие основные технические характеристики:
Номинальное входное напряжение......... 200 мВ

Номинальное выходное напряжение........ 140 мВ

Глубина регулировки громкости......... 40 дБ

Тонкомпенсация (при уровне громкости — 30 дБ) на частоте:

100 Гц................ 6 дБ

10 кГц................ 4 дБ

Регулировка стереобаланса........... ±6 дБ
Резистор R1 и соответствующий ему в другом канале уменьшают взаим­ное влияние каналов в режиме «Моно». Резистор R2 с зависимостью А обес­печивает регулировку стереобаланса. Последовательно включенный резистор R3 позволяет уменьшить потери сигнала до 3 дБ (при его отсутствии потери возрастают до б дБ). Кнопкой SB2 включают резистивный делитель R4, R5, уменьшающий сигнал в 10 раз. Громкость регулируют переменным резистором R7, к отводу которого (при нажатой кнопке SB3) подключается цепь тонком-пенсации.

Узел регулировок собран на выводах переменных резисторов и переключа­телей П2К. Монтаж выполнен экранированным проводом МГШВЭ-0,2. Регу­лятор стереобаланса — СПЗ-12г с зависимостью А; регулятор громкости — СПЗ-12д с зависимостью В; остальные резисторы МЛТ-0,25; конденсаторы КМ-5, КМ-6, переключатели — П2К с независимой фиксацией.

Налаживание узла в основном состоит в проверке правильности монтажа.

Регулятор громкости и баланса на переключателях галетного типа. Как уже указывалось, разбаланс сопротивлений сдвоенных переменных резисторов достигает ±6 дБ, что вызывает разбаланс уровней сигналов в каналах и рас­согласование АЧХ при введении тонкомпенсации. Коэффициент усиления кана­лов можно выравнить регулятором стереобаланса, но сбалансировать АЧХ с помощью обычных органов управления не удается. Кроме того, нередко быва­ет довольно сложно найти сдвоенный резистор с необходимым номиналом и законом регулирования громкости. От указанных недостатков свободен регу­лятор громкости на базе галетного переключателя, позволяющий создать необходимый закон регулирования и при попарном подборе резисторов делителя иметь незначительный разбаланс каналов.

Как известно, использование для регулировки стереобаланса переменных резисторов с линейной зависимостью вызывает значительное ослабление сигна­ла (около 6 дБ). Применение специальных резисторов с зависимостью Е/И не всегда возможно из-за отсутствия необходимых номиналов. Построение регуля­тора баланса на базе галетного переключателя также позволяет легко получить «переменный резистор» нужного номинала с требуемым законом регулиро­вания.

С учетом сказанного, разработан регулятор громкости и баланса с при­менением переключателей галетного типа, схема одного канала которого пока­зана на рис. 40. Он имеет следующие основные технические характеристики:
Номинальное входное напряжение......... 200 мВ

Номинальное выходное напряжение........ 200 мВ

Глубина регулировки громкости . . . . . . . . , 60 дБ

Тонкомпенсация (при уровне громкости — 40 дБ) на частоте 100 Гц................ ±8 дБ

Регулировка стереобаланса........... ±8 дБ
Регулятор громкости состоит из делителя на резисторах RlR22 и га­летного переключателя SA1 на 23 положения. Расчет такого регулятора гром­кости можно произвести следующим образом. Для любого положения движка переключателя затухания а„ в децибелах определяется как



где R — общее требуемое сопротивление делителя; n — номер положения движ­ка переключателя.

Выбрав значения R (из условия согласования с усилительным каскадом) и затухания ап для каждого положения переключателя, это уравнение можно решить для каждого резистора:



где n=2, 3, ...

При равномерном шаге затухания

ап = аi — (n — 1) Да,

где ai — максимальное затухание делителя регулятора (выбирается из условия необходимой глубины регулирования); Да — шаг затухания; Дa=a1/(N — 1), где N — максимальное число положений движка переключателя.

Рассчитанные сопротивления регулятора громкости при R = 10 кОм, ai = =60 дБ и N=23 приведены в табл. 2. С учетом особенностей слухового вос­приятия шаг затухания Да первых трех положений переключателя выбран рав­ным 6 дБ, следующих трех — 4 дБ, остальных — 2 дБ. Резистор R23 и соответ­ствующий ему во втором канале служат для уменьшения взаимного влияния каналов и для выравнивания звукового давления в режиме «Моно». Регуля­тор баланса выполнен на резисторах R24 — R29 и переключателе SA2. Ценя тонкоррекции Cl, C2, R32 подключают кнопкой SB3.



Рис. 40. Принципиальная схема регулятора громкости и баланса на переключателях галетного типа

1   2   3   4   5   6   7   8   9   ...   17

Похожие:

Практические схемы высококачественного звуковоспроизведения icon Техническое задание на кип. Требования к условиям размещения оборудования
Схемы принципиальные электрические питания (включая схемы резервирования питания, схемы ибп, схемы питания шкафов и пультов)
Практические схемы высококачественного звуковоспроизведения icon 19. Принципиальные электрические схемы
Поскольку невозможно в данном Руководстве привести все принципиальные схемы за каждый год выпуска, ниже приводятся наиболее типичные...
Практические схемы высококачественного звуковоспроизведения icon Кабардино-балкарский государственный университет практические навыки педиатра
Практические навыки педиатра. Часть – Изд. 2-е, перер., доп. – Нальчик: Каб. Балк ун-т, 2006. – 120 с
Практические схемы высококачественного звуковоспроизведения icon Проект
Цель изучения темы – формирование у студентов профессиональных умений диагностирования рассеянного склероза, назначения схемы лечения...
Практические схемы высококачественного звуковоспроизведения icon Инструкция дается для наиболее распространенной схемы "замок-вкладыш"
Инструкция дается для наиболее распространенной схемы "замок-вкладыш" по длинной стороне панели и "замок-защелка" по короткой; отличия...
Практические схемы высококачественного звуковоспроизведения icon Схемы подсоединения пульта управления med 2000 Декабрь 1998 г
Внимание: приведенные здесь схемы и цвета проводов оригинальных устройств следует рассматривать как чисто иллюстративными из-за возможных...
Практические схемы высококачественного звуковоспроизведения icon Инструкция по монтажу и эксплуатации Уважаемый покупатель
Поздравляем Вас с выбором высококачественного продукта фирмы Immergas, произведенного в полном соответствии с последними требованиями...
Практические схемы высококачественного звуковоспроизведения icon Гидравлическая литьевая машина Kuasy 170/55-i-40, документация по...
Гидравлическая литьевая машина Kuasy 170/55-i-40, документация по эксплуатации, блок-схемы последовательности операций по режимам,...
Практические схемы высококачественного звуковоспроизведения icon Практические занятия по исторической геологии
Практические занятия по исторической геологии. – Казань: Казанский государственный университет, 2004. – 72 с
Практические схемы высококачественного звуковоспроизведения icon Методические рекомендации для подготовки к семинарским (практическим)...
Практические занятия по Особенной части уголовного права помогают закрепить теоретические знания, полученные на лекциях, семинарах...
Практические схемы высококачественного звуковоспроизведения icon Технический паспорт и инструкция по эксплуатации введение
Мы уверены, что Вы будете довольны Вашим выбором, так как нашей целью является поставка высококачественного, надёжного и современного...
Практические схемы высококачественного звуковоспроизведения icon Содержание Введение Генеральный (ситуационный) план пс «Каюковская»...
Место прохождения преддипломной практики «Когалымские электрические сети» филиал «Тюменьэнерго». В состав ОАО «Тюменьэнерго» входит...
Практические схемы высококачественного звуковоспроизведения icon Практические навыки дерматовенеролога часть I учебно-методическое...
Учебно-методические указания «Практические навыки дерматовенеролога» составлены на основе типового учебного плана и программы специализации...
Практические схемы высококачественного звуковоспроизведения icon Инструкция по эксплуатации дорогие покупатели
Пожалуйста, прочитайте и обязательно следуйте инструкции по эксплуатации. Эта роскошная надувная кровать произведена из высококачественного...
Практические схемы высококачественного звуковоспроизведения icon Отчет о научно-исследовательской работе Анализ существующего состояния...
Разработка схемы теплоснабжения мо «Улу-Юльское сельское поселение» на период до 2028 года
Практические схемы высококачественного звуковоспроизведения icon Машина мешкозашивочная gk 9 паспорт и инструкция по эксплуатации
Машина может сшивать мешки из мешковины/джута/, ткани, полипропилена, бумаги. Крепежные элементы выполнены в метрической системе,...

Руководство, инструкция по применению




При копировании материала укажите ссылку © 2024
контакты
rykovodstvo.ru
Поиск