М. Г. Беренгартен И. А. Васильева В. В. Девяткин Н. Е. Николайкина Разработчик электронной версии Федосеев О


Скачать 4.38 Mb.
Название М. Г. Беренгартен И. А. Васильева В. В. Девяткин Н. Е. Николайкина Разработчик электронной версии Федосеев О
страница 7/46
Тип Документы
rykovodstvo.ru > Руководство эксплуатация > Документы
1   2   3   4   5   6   7   8   9   10   ...   46

ГЛАВА 2. МЕТОДЫ УТИЛИЗАЦИИ И ОБЕЗВРЕЖИВАНИЯ ПО И ЗАГРЯЗНЕНИЙ


Error: Reference source not found

2.1. Сжигание Error: Reference source not found

2.2.Сжигание твердых отходов Error: Reference source not found

2.3. Сжигание жидких отходов Error: Reference source not found

2.1. Сравнительные характеристики барботажного и турбобаоботажного сжигания жидких нефтеотходов. Error: Reference source not found

2.4. Пиролиз и газификация отходов Error: Reference source not found

2.5. Сушка Error: Reference source not found

2.6. Термические методы обезвреживания минерализованных стоков Error: Reference source not found

2.7. Термические методы кондиционирования осадков сточных вод Error: Reference source not found

2.8. Термическое обезвреживание газообразных выбросов Error: Reference source not found

2.9. Механическая обработка твердых отходов Error: Reference source not found

2.10. Механическое обезвоживание осадков промышленных сточных вод Error: Reference source not found

2.11. Реагентная обработка Error: Reference source not found

2.12. Методы улавливания пыли и газов Error: Reference source not found

 

2.1. Сжигание


Сжигание -- наиболее распространенный способ термического обезвреживания ПО. Сжигание осуществляется в печах и топках различных конструкций.

Промышленные печи — это технологические или энерготехнологические агрегаты, в которых тепло сожженного твердого, жидкого или газообразного топлива или нагрев, производимый электрическим током, используются для технологических либо отопительных целей. Топка представляет собой устройство для сжигания топлива в печах и паровых котлах в является одним из элементов печи. Поскольку сжигание отходов не всегда сопровождается утилизацией тепла, следует различать термины "печь" и "топка". Например, барабанная установка или установка с кипящим слоем автотермического сгорания отходов с последующей утилизацией тепла в строгом смысле являются топками. Однако в них может Осуществляться технологический процесс обезвреживания негорючих и токсичных отходов и тогда, в смысле воздействия на материал, они являются печами.

В основу классификации топочных устройств для сжигания отходов положены признаки аэродинамического характера как наиболее важные, так как ими определяется подвод окислителя к реагирующей поверхности, что в наибольшей мере влияет на удельную теплопроизводительность и экономичность топочного процесса. В этой связи различают топки слоевые — для сжигания кускового топлива, например неизмельченных твердых бытовых отходов (ТБО), и камерные --для сжигания газообразных и жидких отходов, а также твердых отходов в пылевидном (или мелкодробленом) состоянии. Комбинированный способ сжигания реализуется в факельно-слоевых топках. Особое место в этой классификации занимают барботажные и турбобарботажные топки для сжигания жидких отходов. Барботажные устройства иногда по традиции называют горелками.

Слоевые топки подразделяют на топки с плотным и кипящим слоем, камерные — на факельные прямоточные и циклонные (вихревые). Слоевые топки с плотным слоем, чаще их называют просто "слоевыми топками", могут быть с колосниковой решеткой либо без нее (подовые, барабанные, многоподовые и пр.).

2.2.Сжигание твердых отходов


Сжигание твердых и пастообразных отходов может осуществляться во всех перечисленных выше типах печей, за исключением барботажных и турбобарботажных. Наиболее широкое применение получили факельно-слоевые топки. Топки для слоевого сжигания, которые более других используются для сжигания твердых отходов (прежде всего ТБО и их смеси с производственным мусором), классифицированы по ряду Других признаков: способам подачи и воспламенения отходов, удаления шлака и т.д. По режиму подачи отходов в слой различают топочные устройства с периодической и непрерывной загрузкой. По организации тепловой подготовки и воспламенения отходов в слое различают топки с нижним, верхним и смешанным (неограниченным) воспламенением. По способу подвода к слою топлива (отходов) существуют следующие схемы, отличающиеся сочетанием направлений газовоздушного и топливно-шлакового потоков: встречные (противоток), параллельные (прямоток), поперечные (перекрестный ток) и смешанные.

Многочисленные исследования горящего слоя топлива (методами зонометрии, надслойного газового анализа, газообразования в слое, распределения температур в слое) позволили условно разделить весь процесс в нем на три основных периода: подготовка топлива (отходов) к горению, собственно горение (окислительная и восстановительная зоны),до-жигание горючих и очаговых остатков. Некоторые авторы в периоде подготовки выделяют зону сутки и зону выхода летучих.

В зоне подготовки отходы прогреваются, из них удаляется влага и выделяются летучие вещества, образовавшиеся в результате нагрева отходов. В кислородной зоне происходит сгорание углерода кокса с образованием диоксида и частично оксида углерода, в результате чего выделяется основное количество тепла в слое. В конце кислородной зоны наблюдается максимальная концентрация CO2 и температура слоя. Непосредственно к кислородной зоне примыкает восстановительная зона, в которой происходит восстановление диоксида углерода, оксида углерода с потреблением известного количества тепла. Заканчивается процесс горения выжиганием озоленного кокса. Тепловая работа слоя топлива и топочного объема подробно описаны в специальной литературе.

Слоевые топки получили широкое применение для сжигания твердых бытовых и близких к ним по морфологическому составу ПО.

Требуемые обработка и скорость движения слоя во всех зонах горения наиболее просто достигаются при использовании механических ступенчатых колосниковых, а также цепных решеток. В большинстве конструкций шуровка и передвижение мусора происходят за счет движения ступеней наклонной решетки.

Подвижные ряды колосников каждой ступени наклонно-переталкивающей решетки (рис. 4) совершают одновременные возвратно-поступательные движения в направлении перемещения мусора. Частота движения, а также длина возвратно-поступательного движения колосников регулируются индивидуально для каждой ступени.

Наклонно-переталкивающие решетки для мусора выпускаются фирмами "Фон Ролл" (Швейцария), "Волунд" (Дания), "Штейнмюллер и Клаудис Петере" (ФРГ).

О
братно-переталкивающая и каскадная решетки относятся к группе переталкивающих с глубокой шуровкой слоя. Эти типы решеток имеют различное конструктивное оформление. Обратнопереталкивающая решетка (система Мартин, рис. 4, б) набрана из чередующихся поперечных рядов подвижных и неподвижных колосников, причем подвижные ряды колосников совершают возвратно-поступательные движения навстречу спускающемуся слою. Решетка выполнена с наклоном в сторону перемещения слоя.

Каскадные решетки выполняются горизонтальными либо с небольшим наклоном в сторону перемещения отходов, или в противоположную сторону (решетки с обратным наклоном). Перемещение отходов вдоль колосникового полотна осуществляется за счет возвратно-поступательного движения колосников, расположенных под острым углом к направлению перемещения слоя.

Рабочее полотно секторных решеток фирмы "Эсслинген" ФРГ (рис. 4, в) составлено из подвижных колосников в форме сектора. Колосники набраны в ряды-секции. Попеременное поворотное движение отдельных колосников вокруг опорной оси, проходящей через вершины секторных колосников, обеспечивает продвижение отходов вдоль решетки.

В желобной решетке (рис. 4, г), выпускаемой фирмой "Плибрико" (ФРГ), регулируются только число и длина ходов. Все решетки, кроме ступенчатой опрокидывающей с гидравлическим приводом, имеют механические приводы.

Шуровка и продвижение слоя осуществляются как движением частей колосниковой решетки, так и разделением всего полотна решетки на части, расположенные уступом, в местах перехода зоны подготовки к сжиганию в зону сжигания, и зоны сжигания в зону дожигания. Такое разделение обеспечивает интенсивное перемешивание мусора, но вызывает повышенный унос золы. Первую часть расчлененной решетки называют подсушивающей, вторую — главной, третью -- дожигательной. На рис.4,д показана схема наиболее распространенной валковой колосниковой решетки системы "Дюссельдорф" (ФРГ).

Дожигание может осуществляться на ступенчатой колосниковой решетке модификации печи "Фон Ролл", в дожига-тельном барабане (печи "Волунд") или в шлаковом генераторе (печи "Фон Ролл"), Схема мусоросжигательного завода со ступенчатой колосниковой решеткой показана на рис. 5.

Подлежащие сжиганию отходы специализированным автотранспортом привозят на завод и разгружают в приемный бункер 1, откуда грейфером 2 подают в загрузочный бункер 3 камерной печи 6. Печь оборудована ступенчато расположенными подвижными колосниками 4, под которые воздуходувкой 5 подается воздух, необходимый для процесса горения. Жидкие горючие отходы могут впрыскиваться в печь форсункой 7. Дымовые газы отдают тепло в котле 8, очищаются в электрофильтре 10 и при помощи дымососа 11 выбрасываются в атмосферу через трубу 12.

Шлак, перемещающийся с колосниковой решетки, охлаждается водой и направляется на складирование транспортирующим устройством 9. Тепло, выработанное в котле, может использоваться непосредственно в виде пара или расходоваться на производство электроэнергии.

Многоподовые печи (рис. 6) получили широкое распространение в странах Западной Европы и США для сжигания отходов, в первую очередь, осадков городских сточных вод. Печь состоит из цилиндрического стального корпуса 1, футерованного огнеупором, с поэтажно расположенными подами 2. По оси печи располагается охлаждаемый воздухом полый вал 3 с гребковыми лопастями 4. Вал приводится во вращение от расположенного внизу электропривода 5 и передаточного механизма 6. Гребковые лопасти, так же как и вал, выполняются пустотелыми. Через них в процессе работы подается воздух для охлаждения металлических поверхностей. Влажный продукт перемещается гребковыми лопастями сверху вниз от пода к поду навстречу дымовым газам. За счет тепла идущих в противотоке дымовых газов происходит подсушивание отходов, а затем их воспламенение, для чего дополнительно используют горючий газ. Зола, выходящая из патрубка 8, обычно гасится водой, которая затем направляется в отвал.





 

Рис. 6. Поперечное сечение многоподовой печи 1 - корпус; 2 - под: 3 -воздухоохлаждаемый полый вал; 4 - гребковые лопасти; 5 - электропривод; 6 - передаточный механизм; 7 - люк; 8 - патрубок

 

Производительность печей по твердому осадку 9— 300 т/сут. Печи подобных конструкций эксплуатируются в США с 1937 г. Затраты на сжигание 1 т твердых отходов 34 руб.

Барабанные печи -- основной вид теплоэнергетического оборудования, которое применяется для централизованного сжигания твердых и пастообразных ПО. Этими печами оснащены практически все станции обезвреживания ПО, построенные в странах Западной Европы за последние годы. Основным узлом барабанной печи (рис. 7) является горизонтальный цилиндрический корпус 1, покрытый огнеупорной футеровкой 2 и опирающийся бандажами 6 на ролики 7. Барабан наклонен под небольшим углом в сторону выгрузки шлака и в процессе работы вращается со скоростью 0,8—2 мин-1, получая движение от привода 10 через зубчатый венец 9. Во избежание продольного смещения барабана предусмотрены ролики 8.

Твердые и пастообразные отходы подаются в корпус печи с ее торца в направлении стрелок А. В случае необходимости дополнительное топливо или жидкие горючие отходы (растворители) распыливаются через форсунку (стрелка Д), повышая температуру внутри печи. В зоне 12 поступивший материал, перемешиваясь при вращении печи, подсушивается, частично газифицируется и перемещается в зону горения 13. Излучение от пламени в этой зоне раскаляет футеровку печи и способствует выгоранию органической части отходов и подсушке вновь поступившего материала. Образовавшийся в зоне 24 шлак перемещается к противоположному торцу печи в направлении стрелки В, где падает в устройство для мокрого или сухого гашения золы и шлака.

-



Рис. 7. Схема барабанной печи А - загрузка отходов; С - дымовые газы; В - выгрузка золы (шлака);

Д - дополнительное топливо; Е - воздух; Г - тепловое излучение; 1 -корпус барабанной печи; 2 - футеровка; 3 - разгрузочный торец; 4 -присоединительные сегменты; 5 - вентилятор; 6 - бандажи; 7 - ролики опорные; 8 - ролики боковые; 9 - зубчатый венец; 10 - привод;11 - зона испарения воды; 12 - отходы; 13 -- зона горения; 14 - зола (шлак)

 

Газы, покидающие печь, могут содержать несгоревшие примеси, поэтому обычно после барабанной печи в схеме установки (рис. 8) предусматривается камера дожигания. Для очистки отходящих газов предусматриваются скрубберы или электрофильтры.

Печи с псевдоожиженным (кипящим) слоем. Применение кипящего слоя при газификации топлива в черной и цветной металлургии, химической, строительной и других отраслях промышленности позволило резко интенсифицировать ряд технологических процессов. Этот метод получил широкое распространение и для термического обезвреживания ПО, особенно в Японии, Франции, ФРГ и США.

В печах с кипящим слоем продукт переходит во взвешенное состояние в камере сгорания потоком воздуха, проходящим через слой сыпучего (порошкообразного или дробленого) материала, не перемещаясь по направлению этого потока.

Скорость газового потока должна быть достаточной для того, чтобы частицы находились во взвешенном состоянии и вихревом турбулентном движении, напоминающем поток кипящей жидкости.

 


 

 

Рис. 8. Установка с барабанной печью

I - очистка газов; 2 -труба; 3 - камера дожигания; 4 - барабан; 5 - подача

отходов; 6 - шлак

 

 

В нагретом кипящем слое происходит интенсивный теплообмен между частицами и газом. Теплопередача в кипящем слое в 4 раза выше, чем в неподвижном.

На рис. 9 показана принципиальная схема печи с кипящим слоем. Вертикальный корпус печи 3, футерованный огнеупорным кирпичом, имеет внизу газораспределительную решетку 8 провального или беспровального типа. В процессе работы печи под решетку подается псевдоожижающий газ, обычно воздух. Воздух приводит во взвешенное состояние зернистую загрузку, которая распределяется на плотную фазу слоя 1 и разбавленную фазу 2.

Сверху на загрузку через форсунки или дозаторы подаются отходы. Горение осуществляется в камере 5. Вода, попадающая в кипящий слой, почти мгновенно испаряется. Турбу-лизованная раскаленная поверхность кипящего слоя с движущимися во всех направлениях твердыми частицами не дает образовываться крупным сферическим каплям, мгновенно разрушает их до мельчайших капель, что значительно увеличивает суммарную поверхность испарения. Наличие крупных частиц или слипшихся агломератов шлама создает условия для частичного горения отходов, например нефтеотходов внутри слоя, так как они тонут в слое. Среднее время существования крупных частиц составляет около 30 мин. Дымовые газы, содержащие минеральные механические примеси, очищаются в циклоне 6. Выгрузка пыли производится шнеком 7.

 

 

 

 

рис. 9. Схема работы печи с псевдоожиженным слоем 1 - плотная фаза ожиженного слоя; 2 - разбавленная фаза ожиженного слоя; 3 - печь; 4 - распыленный загруженный материал, 5 - камера; 6 -циклонный сепаратор; 7 -труба для возврата материалов, 8 - газораспределительная решетка

 

 

Печи кипящего слоя менее универсальны, чем барабанные и многоподовые и требуют особых условий работы. Кроме того, эксплуатация печей с кипящим слоем на нефтеперерабатывающих предприятиях привела к отрицательным результатам. Главный недостаток состоял в том, что предварительно подогретый до 600°С слой песка периодически остывал до 400--450°С. При такой температуре в слое песка горение прекращалось, шли процессы крекинга и коксования, т.е. газификация шлама, что приводило к образованию коксовых агломератов и закупориванию кипящего слоя. В то же время при правильном выборе объекта обезвреживания и соблюдении технологических режимов печи кипящего слоя работают надежно и эффективно.
1   2   3   4   5   6   7   8   9   10   ...   46

Похожие:

М. Г. Беренгартен И. А. Васильева В. В. Девяткин Н. Е. Николайкина Разработчик электронной версии Федосеев О icon 1Место доставки товара: 456770, г. Снежинск, Челябинская область, ул. Васильева, 13
Фгуп «рфяц-вниитф им академ. Е. И. Забабахина», «зато» г. Снежинск, Челябинская обл., ул. Васильева 13
М. Г. Беренгартен И. А. Васильева В. В. Девяткин Н. Е. Николайкина Разработчик электронной версии Федосеев О icon Тип Интегрированная среда разработки Разработчик
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 19 января...
М. Г. Беренгартен И. А. Васильева В. В. Девяткин Н. Е. Николайкина Разработчик электронной версии Федосеев О icon Порядок установки модуля
Если раньше был установлен модуль обмена 4 версии, то необходимо обновить его до последней версии, а только потом устанавливать модуль...
М. Г. Беренгартен И. А. Васильева В. В. Девяткин Н. Е. Николайкина Разработчик электронной версии Федосеев О icon Порядок установки модуля
Если раньше был установлен модуль обмена 4 версии, то необходимо обновить его до последней версии, а только потом устанавливать модуль...
М. Г. Беренгартен И. А. Васильева В. В. Девяткин Н. Е. Николайкина Разработчик электронной версии Федосеев О icon Руководство пользователя (часть 1) Код программного средства 2,16,53...
Первый заместитель Генерального директора Федерального государственного унитарного предприятия «Главный научно-исследовательский...
М. Г. Беренгартен И. А. Васильева В. В. Девяткин Н. Е. Николайкина Разработчик электронной версии Федосеев О icon Руководство пользователя по работе с модулем «Интернет-магазин + 1С»
Если раньше был установлен модуль обмена 4 версии, то необходимо обновить его до последней версии, а только потом устанавливать модуль...
М. Г. Беренгартен И. А. Васильева В. В. Девяткин Н. Е. Николайкина Разработчик электронной версии Федосеев О icon Инструкция по обновлению до версии 522. 0
При переходе с версий 518. 5 и более ранних обновление нужно проводить через промежуточную установку версии 520. 0 (более подробную...
М. Г. Беренгартен И. А. Васильева В. В. Девяткин Н. Е. Николайкина Разработчик электронной версии Федосеев О icon Методические рекомендации организационно-правовые основы деятельности,...
Разработчик: Республиканский сельскохозяйственный потребительский обслуживающий кооператив «Содействие»
М. Г. Беренгартен И. А. Васильева В. В. Девяткин Н. Е. Николайкина Разработчик электронной версии Федосеев О icon Вакансии группы разработчиков (Engineering) – программист-разработчик...
В связи с расширением, компания ООО «МэйнКонцепт – ДивИкс» открывает серию вакансий на позиции
М. Г. Беренгартен И. А. Васильева В. В. Девяткин Н. Е. Николайкина Разработчик электронной версии Федосеев О icon Инструкция Установка и настройка на рабочее место по средств скзи...
Установка и настройка на рабочее место по средств скзи «КриптоПро» версии 0, по сертифицированного электронного ключа eToken pro...
М. Г. Беренгартен И. А. Васильева В. В. Девяткин Н. Е. Николайкина Разработчик электронной версии Федосеев О icon Руководство по установке внимание!
Для установки версии 40 не требуется наличие установленной более ранней версии
М. Г. Беренгартен И. А. Васильева В. В. Девяткин Н. Е. Николайкина Разработчик электронной версии Федосеев О icon Руководство по установке внимание!
Для установки версии 37 не требуется наличие установленной более ранней версии
М. Г. Беренгартен И. А. Васильева В. В. Девяткин Н. Е. Николайкина Разработчик электронной версии Федосеев О icon Руководство по установке внимание!
Для установки версии 23 не требуется наличие установленной более ранней версии
М. Г. Беренгартен И. А. Васильева В. В. Девяткин Н. Е. Николайкина Разработчик электронной версии Федосеев О icon Отчет азовской научно-исследовательской станции
В. М. Федосеев, д Х. н., проф. И. Н. Бекман, д г н., проф. Г. А. Сафьянов, доц. Я. И. Лыс, ст н с. И. М. Бунцева, ст н с. Л. М. Шипилова,...
М. Г. Беренгартен И. А. Васильева В. В. Девяткин Н. Е. Николайкина Разработчик электронной версии Федосеев О icon Российской Федерации «ино центр (Информация. Наука. Образование)»
Актуальные проблемы современности сквозь призму философии. Выпуск 1 /отв ред. С. В. Девяткин; Новгу имени Ярослава Мудрого. – Великий...
М. Г. Беренгартен И. А. Васильева В. В. Девяткин Н. Е. Николайкина Разработчик электронной версии Федосеев О icon Инструкция по установке и использованию компонента «Работа с электронной...


Руководство, инструкция по применению




При копировании материала укажите ссылку © 2024
контакты
rykovodstvo.ru
Поиск