Скачать 0.78 Mb.
|
1.4. Способ полигонометрии Полигонометрией называют построенный на местности многоугольник, замкнутый или разомкнутый, в котором измерены все длины сторон и горизонтальные угла при вершинах. Вершины такого многоугольника закрепляются на местности специальными подземными знаками. Таблица 1.3. Некоторые характеристики построения опорных сетей способом полигонометрии
Примечание к таблице 1.2: В ходах полигонометрии 1 разряда длиной до 1 км и 2 разряда длиной до 0,5 км допускается абсолютная линейная невязка 10 см. Инженерно-геодезические сети из полигонометрических построений сегодня являются наиболее распространённым способом создания опорных плановых сетей, что обусловлено широким внедрением в геодезическое производство электронных тахеометров и светодальномеров. Различают разомкнутые вытянутый и ломаный полигонометрические ходы, которые опираются на исходные пункты и стороны с известными дирекционными углами. В зависимости от площади объекта, его формы, обеспеченности исходными пунктами полигонометрия проектируется в виде одиночных ходов, системы ходов с узловыми точками или в виде замкнутых полигонов. В практике инженерно-геодезических работ наибольшее применение нашли полигонометрические сети из ходов 4 класса, 1 и 2 разрядов. Основные характеристики таких ходов приведены в таблице 1.2. Полигонометрия строится в виде различных систем с узловыми точками или одиночными ходами для решения разнообразных задач при производстве изыскательских работ и разбивках сооружений. В полигонометрической сети следует предусмотреть минимальное число порядков, ограничиваясь, как правило, полигонометрией 4 класса и 1 разряда. Исходными данными для полигонометрических сетей служат пункты построений более высокого класса. В зависимости от выбора исходных данных сеть может рассматриваться как свободная или несвободная. Более подробно вопросы построения инженерно-геодезических сетей методом полигонометрии рассмотрены в главе 3. 1.5. Линейно-угловые сети Линейно-угловые сети определяются как построенные на местности примыкающие друг к другу геометрические фигуры из треугольников и четырёхугольников, в которых измерены все стороны и все углы или часть углов и все стороны или ряд сторон и все углы. Естественно, вершины фигур закрепляются на местности подземными центрами и обозначаются наружными знаками. При построении инженерно-геодезических разбивочных сетей существенным является не только высокие требования к точности планового положения пунктов, но и к равномерному распределению ошибок по сети. В этом свете описанные ранее способы построения разбивочных сетей имеют некоторые специфические недостатки. Так, главным недостатком триангуляции является резкое падение точности определения длин сторон при увеличении расстояния между базисом и определяемой стороной, особенно при резко неравносторонней форме треугольников, что часто встречается в инженерно-геодезических сетях. Основной недостаток трилатерации это отсутствие контроля, а также, если форма треугольников отличается от равносторонней, то углы, вычисленные по измеренным сторонам, получаются неравноточными. Линейно-угловые сети лишены этих недостатков и являются наиболее точными геодезическими построениями на местности, вбирающими в себя достоинства, как триангуляции, так и трилатерации. В такой сети точность её элементов практически не зависит от формы треугольников, существенно уменьшается зависимость между продольным и поперечным сдвигами, обеспечивается весьма жёсткий контроль угловых и линейных измерений. Вид и конфигурация инженерно-геодезических плановых сетей зависят от формы и размеров территории города или посёлка, строительной площадки или объекта строительства. В настоящее время выполнение топографо - геодезических работ в городах производится согласно "Инструкции по топографической съемке в масштабах 1:5000, 1:2000, 1:1000, 1:500" (ГКИНП-02-033-79) изд. 1982 г. 1.6. Построение опорных сетей спутниковыми методами Спутниковые методы относятся к относительно новому поколению измерительных систем. Способ построения и реконструкции опорных инженерно-геодезических сетей, основанный на спутниковых технологиях, сегодня является наиболее востребованным и наиболее распространённым. Переход топографо-геодезического производства на автономные методы спутниковых координатных определений обеспечивает наиболее рациональное и эффективное практическое определение координат и высот пунктов земной поверхности на всей территории страны с точностями, требуемыми для решения возможно более широкого круга научно-технических и производственных задач. При обеспечении съёмок масштаба 1:10000 спутниковая технология может быть применена для развития съёмочного обоснования (планово-высотной привязки опознаков). При съёмках масштабов 1:5000, 1:2000, 1:1000 и 1:500 (далее – крупномасштабных съёмках) эта технология может быть применена как для развития съёмочного обоснования, так и для съёмки ситуации и рельефа с высотами сечения рельефа 5,0; 2,5; 2,0; 1,0; 0,5 м. Главной особенностью работ по построению и реконструкции региональных, городских (локальных или местных) геодезических сетей является необходимость сохранения системы координат, в которой ранее были выполнены крупномасштабные съемки территории региона (1:500-1:2000) и одновременно с этим обеспечить высокую однородную точность строящейся геодезической сети для решения других задач. Необходимость периодической реконструкции геодезических сетей городов, созданных на основе использования традиционных и спутниковых технологий, возникает по следующим причинам:
Структурная схема построения опорных сетей спутниковыми методами включает следующие этапы:
Опорная региональная или городская спутниковая геодезическая сеть предназначена для обеспечения практических задач:
Однородная высокая точность городских геодезических сетей достигается применением обоснованных оптимальных методов спутниковых наблюдений и соответствующих методов их обработки, а также за счет использования оптимальной геометрии расположения пунктов, их равномерной плотности и максимально возможного совмещения старой и новой геодезических сетей. Один или несколько исходных пунктов (ИП) создаются в городах площадью 100 кми более, с населением около 500 тысяч человек и при наличии перспективы преобразования их в пункты ФАГС, ВГС или постоянно действующие пункты для навигационных систем. Для населенных пунктов площадью до 20 кмвозможно объединение исходных пунктов и пунктов каркасной сети (КС). Наблюдения при этом выполняются по программе пунктов каркасной сети. Значения средних погрешностей взаимного положения любых пунктов спутниковых городских геодезических сетей не должны превышать 30 мм. Пункты городской триангуляции должны быть заменены пунктами спутниковой сети. В случае их утраты пункты спутниковой сети совмещаются с ближайшими к ним (по примыкающим ходам) пунктами полигонометрии. Таким образом, ранее созданная сеть городской триангуляции перекрывается спутниковой геодезической сетью и теряет свое значение. При этом переуравнивание сетей городской триангуляции прошлых лет исключается, так как исходными пунктами для переуравнивания старой сети служат пункты спутниковой сети, в том числе совмещенные с пунктами городской триангуляции. Плотность пунктов создаваемой (реконструируемой) городской (региональной) геодезической сети должна удовлетворять следующим требованиям:
В таблице 1.4 приведены некоторые характеристики, которым должны соответствовать построенные спутниковые сети. Таблица 1.4. Некоторые характеристики региональной (городской) спутниковой сети
В принятой схеме построения городских и региональных спутниковых геодезических опорных сетей возможна дополнительная ступень развития в виде спутниковой геодезической сети 2 класса (СГС-2). По точности эта ступень построения аналогична СГС-1, однако исходными для неё могут служить все пункты выше обозначенных спутниковых построений. Плотность СГС-2 должна удовлетворять текущие потребности городского и регионального геодезического обоснования. Спутниковая городская геодезическая сеть 2 класса (СГС-2) создается в виде исключения при необходимости создания геодезического обоснования на отдельных участках территории города. Общая плотность закрепленного городского геодезического обоснования должна соответствовать:
2. ИЗЫСКАНИЯ ТРАСС ЛИНЕЙНЫХ СООРУЖЕНИЙ 2.1. Инженерно-геодезические изыскания, их назначения и состав. Под инженерными изысканиями понимают комплексное изучение природных и экономических условий района будущего строительства. В результате инженерных изысканий получают материалы, необходимые для разработки экономически целесообразных и технически обоснованных решений при проектировании объектов народного хозяйства с учётом рационального использования и охраны окружающей среды. На основе изысканий вырабатываются прогнозы изменений природной среды под воздействием строительства и эксплуатации предприятий и сооружений. Изыскательские работы предшествуют проектным и подразделяются на инженерно-геодезические, экологические, инженерно-геологические, инженерно-гидрометеорологические изыскания и некоторые другие. Под инженерно-геодезическими изысканиями понимают комплекс работ, обеспечивающих получение топографо-геодезических материалов (планов различных масштабов, профилей и т.п.) для проектирования, строительства или реконструкции предприятий или сооружений. Инженерно-геодезические изыскания позволяют получить информацию о рельефе и ситуации местности и служат основой не только для проектирования, но и для проведения других видов изысканий и обследований. В процессе инженерно-геодезических изысканий выполняют работы по созданию геодезических плановых и высотных сетей, которые являются основой топографических съёмок разных масштабов, производят трассирование линейных сооружений, планово-высотную привязку геологических выработок, точек геофизической разведки и многие другие работы. В зависимости от назначения и вида сооружений, площади изучаемого участка и стадии проектирования в состав инженерно-геодезических изысканий входят:
В ряде случаев по заданию заказчика на участке застройки может выполняться топографическая съёмка масштаба 1:200. |
Программа и методические указания по курсу «прикладная геодезия» Программа и методические указания по курсу «Прикладная геодезия». Часть Изд. МиигаиК. Упп «Репрография», 2012 г., с. 52 |
Методические указания по выполнению практических и лабораторных работ... Методические указания предназначены для обучающихся по специальностям технического профиля 21. 02. 08 Прикладная геодезия |
||
Методические указания к учебной практике по прикладной геодезии,... Авакян В. В. Прикладная геодезия. Геодезическое обеспечение строительного производства», изд. «Амалданик», М., 2013 г., с. 431 |
Методические указания содержат задания к лабораторным работам по... Методические указания предназначены для студентов направления «Прикладная информатика» профиля «Прикладная информатика в экономике»,... |
||
Рабочая программа учебной дисциплины история укрупненная группа 21.... Укрупненная группа 21. 00. 00 Прикладная геология, горное дело, нефтегазовое дело и геодезия |
Методические указания к выполнению kjrcobou и дипломной работ по курсу Методические указания к выполнению курсовой и дипломной работ по курсу «Экономика и организация производства на предприятия приборостроения»:... |
||
Методические указания для теоретических, лабораторно- практических... ... |
Инструкция по топографической съемке в масштабах 1: 5000, 1: 2000,... Методические указания и задания для контрольных работ по курсу “Геодезия” предназначены для студентов 2-ых курсов очных факультетов... |
||
Методические указания по выполнению лабораторных работ Издательство Инженерная геодезия. Методические указания по выполнению лабораторных работ. Составители: Шешукова Л. В., Тютина Н. М., Клевцов Е.... |
Методические указания Ростов-на-Дону 2003 ббк 60. 5: ббк 65. 9(2)... Практикум по курсу «Социология управления»: Методические указания. – Ростов н/Д: Рост гос ун-т путей сообщения, 2003. – 72 с |
||
Методические указания по выполнению лабораторных работ по дисциплине “Базы данных” Методические указания предназначены для студентов специальностей 230401 «Прикладная математика», 230105 «Программное обеспечение... |
Рабочая программа профессионального модуля картографо-геодезическое... Укрупненная группа 21. 00. 00 Прикладная геология, горное дело, нефтегазовое дело и геодезия |
||
Методические указания для выполнения лабораторных работ для студентов... ... |
Методические указания по дисциплине “Системы управления базами данных” Методические указания предназначены для студентов специальностей 230105 «Программное обеспечение вычислительной техники и автоматизированных... |
||
Рабочая программа дисциплины "геодезия" основной образовательной... Рабочая программа обсуждена и одобрена на заседании кафедры "Кадастр и геодезия" |
Методические указания по расчету показателей экономической эффективности... «Прикладная информатика (в экономике)» и могут быть использованы для обоснования целесообразности автоматизации или совершенствования... |
Поиск |