Скачать 1.73 Mb.
|
Синхронный и асинхронный ввод/вывод Задача, выдавшая запрос на операцию ввода/вывода, переводится супервизором в состояние ожидания завершения заказанной операции. Когда супервизор получает от секции завершения сообщение о том, что операция завершилась, он переводит задачу в состояние готовности к выполнению, и она продолжает свою работу. Эта ситуация соответствует синхронному вводу/выводу. Синхронный ввод/вывод является стандартным для большинства ОС. Чтобы увеличить скорость выполнения приложений, было предложено при необходимости использовать асинхронный ввод/вывод. Простейшим вариантом асинхронного вывода является так называемый буферированный вывод данных на внешнее устройство, при котором данные из приложения передаются не непосредственно на устройство ввода/вывода, а в специальный системный буфер. В этом случае логически операция вывода для приложения считается выполненной сразу же, и задача может не ожидать окончания действительного процесса передачи данных на устройство. Процессом реального вывода данных из системного буфера занимается супервизор ввода/ вывода. Естественно, что выделением буфера из системной области памяти занимается специальный системный процесс по указанию супервизора ввода/вывода. Итак, для рассмотренного случая вывод будет асинхронным, если, во-первых, в запросе на ввод/вывод было указано на необходимость буферирования данных, а во-вторых, если устройство ввода/вывода допускает такие асинхронные операции и это отмечено в UCB. Можно организовать и асинхронный ввод данных. Однако для этого необходимо не только выделить область памяти для временного хранения считываемых с устройства данных и связать выделенный буфер с задачей, заказавшей операцию, но и сам запрос на операцию ввода/вывода разбить на две части (на два запроса). В первом запросе указывается операция на считывание данных, подобно тому как это делается при синхронном вводе/выводе. Однако тип (код) запроса используется другой, и в запросе указывается еще по крайней мере один дополнительный параметр — имя (код) того системного объекта, которое получает задача в ответ на запрос и которое идентифицирует выделенный буфер. Получив имя буфера (будем этот системный объект условно называть таким образом, хотя в различных ОС для его обозначения используются и другие термины, например — класс), задача продолжает свою работу. Здесь очень важно подчеркнуть, что в результате запроса на асинхронный ввод данных задача не переводится супервизором ввода/вывода в состояние ожидания завершения операции ввода/ вывода, а остается в состоянии выполнения или в состоянии готовности к выполнению. Через некоторое время, выполнив необходимый код, который был определен программистом, задача выдает второй запрос на завершение операции ввода/вывода. В этом втором запросе к тому же устройству, который, естественно, имеет другой код (или имя запроса), задача указывает имя системного объекта (буфера для асинхронного ввода данных) и в случае успешного завершения операции считывания данных тут же получает их из системного буфера. Если же данные еще не успели до конца переписаться с внешнего устройства в системный буфер, супервизор ввода/вывода переводит задачу в состояние ожидания завершения операции ввода/вывода, и далее все напоминает обычный синхронный ввод данных. Обычно асинхронный ввод/вывод предоставляется в большинстве мультипрограммных ОС, особенно если ОС поддерживает мультизадачность с помощью механизма тредов. Однако если асинхронный ввод/вывод в явном виде отсутствует, его идеи можно реализовать самому, организовав для вывода данных самостоятельный поток. Аппаратуру ввода/вывода можно рассматривать как совокупность аппаратурных процессоров, которые способны работать параллельно относительно друг друга, а также относительно центрального процессора (процессоров). На таких “процессорах” выполняются так называемые внешние процессы. Например, для внешнего устройства (устройства ввода/вывода) внешний процесс может представлять собой совокупность операций, обеспечивающих перевод печатающей головки, продвижение бумаги на одну позицию, смену цвета чернил или печать каких-то символов. Внешние процессы, используя аппаратуру ввода/вывода, взаимодействуют как между собой, так и с обычными “программными” процессами, выполняющимися на центральном процессоре. Важным при этом является то обстоятельство, что скорости выполнения внешних процессов будут существенно (порой, на порядок или больше) отличаться от скорости выполнения обычных (внутренних) процессов. Для своей нормальной работы внешние и внутренние процессы обязательно должны синхронизироваться. Для сглаживания эффекта сильного несоответствия скоростей между внутренними и внешними процессами используют упомянутое выше буферирование. Таким образом, можно говорить о системе параллельных взаимодействующих процессов. Буферы являются критическим ресурсом в отношении внутренних (программных) и внешних процессов, которые при параллельном своем развитии информационно взаимодействуют. Через буфер (буферы) данные либо посылаются от некоторого процесса к адресуемому внешнему (операция вывода данных на внешнее устройство), либо от внешнего процесса передаются некоторому программному процессу (операция считывания данных). Введение буферирования как средства информационного взаимодействия выдвигает проблему управления этими системными буферами, которая решается средствами супервизорной части ОС. При этом на супервизор возлагаются задачи не только по выделению и освобождению буферов в системной области памяти, но и синхронизации процессов в соответствии с состоянием операций по заполнению пли освобождению буферов, а также их ожидания, если свободных буферов в наличии нет, а запрос на ввод/вывод требует буферирования. Обычно супервизор ввода/вывода для решения перечисленных задач использует стандартные средства синхронизации, принятые в данной ОС. Поэтому если ОС имеет развитые средства для решения проблем параллельного выполнения взаимодействующих приложений и задач, то, как правило, она реализует и асинхронный ввод/вывод. Кэширование операций ввода/вывода при работе с накопителями на магнитных дисках Накопители на магнитных дисках обладают крайне низкой скоростью по сравнению с быстродействием центральной части компьютера. Разница в быстродействии отличается на несколько порядков. Например, современные процессоры за один такт работы, а они работают уже с частотами в 1 ГГц и более, могут выполнять по две операции. Таким образом, время выполнения операции (с позиции внешнего наблюдателя, не видящего конвейеризации при выполнении машинных команд, благодаря которой производительность возрастает в несколько раз) может составлять 0,5 не (!). В то же время переход магнитной головки с дорожки на дорожку составляет несколько миллисекунд. Такие же временные интервалы имеют место и при ожидании, пока под головкой чтения/ записи не окажется нужный сектор данных. Как известно, в современных приводах средняя длительность на чтение случайным образом выбранного сектора данных составляет около 20 мс, что существенно медленнее, чем выборка команды или операнда из оперативной памяти и уж тем более из кэша. Правда, после этого данные читаются большим пакетом (сектор, как мы уже говорили, имеет размер в 512 байтов, а при операциях с диском часто читается или записывается сразу несколько секторов). Таким образом, средняя скорость работы процессора с оперативной памятью на 2-3 порядка выше, чем средняя скорость передачи данных из внешней памяти на магнитных дисках в оперативную память. Для того чтобы сгладить такое сильное несоответствие в производительности основных подсистем, используется буферирование и/или кэширование данных. Простейшим вариантом ускорения дисковых операций чтения данных можно считать использование двойного буферирования. Его суть заключается в том, что пока в один буфер заносятся данные с магнитного диска, из второго буфера ранее считанные данные могут быть прочитаны и переданы запросившей их задаче. Аналогичный процесс происходит и при записи данных. Буферирование используется во всех операционных системах, но помимо буферирования применяется и кэширование. Кэширование исключительно полезно в том случае, когда программа неоднократно читает с диска одни и те же данные. После того как они один раз будут помещены в кэш, обращений к диску больше не потребуется и скорость работы программы значительно возрастет. Если не вдаваться в подробности, то под кэшем можно понимать некий пул буферов, которыми мы управляем с помощью соответствующего системного процесса. Если мы считываем какое-то множество секторов, содержащих записи того или иного файла, то эти данные, пройдя через кэш, там остаются (до тех пор, пока другие секторы не заменят эти буферы). Если впоследствии потребуется повторное чтение, то данные могут быть извлечены непосредственно из оперативной памяти без фактического обращения к диску. Ускорить можно и операции записи: данные помещаются в кэш, и для запросившей эту операцию задачи можно считать, что они уже фактически и записаны. Задача может продолжить свое выполнение, а системные внешние процессы через некоторое время запишут данные на диск. Это называется операцией отложенной записи (lazy write, “ленивая запись”). Если отложенная запись отключена, только одна задача может записывать на диск свои данные. Остальные приложения должны ждать своей очереди. Это ожидание подвергает информацию риску не меньшему (если не большему), чем отложенная запись, которая к тому же и более эффективна по скорости работы с диском. Интервал времени, после которого данные будут фактически записываться, с одной стороны, желательно выбрать больше, поскольку если потребуется еще раз прочитать эти данные, то они уже и так фактически находятся в кэше. И после модификации эти данные опять же помещаются в быстродействующий кэш. С другой стороны, для большей надежности данные желательно поскорее отправить во внешнюю память, поскольку она энергонезависима и в случае какой-нибудь аварии (например, нарушения питания) данные в оперативной памяти пропадут, в то время как на магнитном диске они с большой вероятностью останутся в безопасности. Количество буферов, составляющих кэш, ограничено, поэтому возникает ситуация, когда вновь прочитанные или записываемые новые секторы данных должны будут заменить данные в этих буферах. Возможно использование различных дисциплин, в соответствии с которыми будет назначен какой-либо буфер под вновь затребованную операцию кэширования. Кэширование дисковых операций может быть существенно улучшено за счет введения техники упреждающего чтения (read ahead). Она основана на чтении с диска гораздо большего количества данных, чем на самом деле запросила операционная система или приложение. Когда некоторой программе требуется считать с диска только один сектор, программа кэширования читает еще и несколько дополнительных блоков данных. А операции последовательного чтения нескольких секторов фактически несущественно замедляют операцию чтения затребованного сектора с данными. Поэтому, если программа вновь обратится к диску, вероятность того, что нужные ей данные уже находятся в кэше, достаточно высока. Поскольку передача данных из одной области памяти в другую происходит во много раз быстрее, чем чтение их с диска, кэширование существенно сокращает время выполнения операций с файлами. Итак, путь информации от диска к прикладной программе пролегает как через буфер, так и через файловый кэш. Когда приложение запрашивает с диска данные, программа кэширования перехватывает этот запрос и читает вместе с необходимыми секторами еще и несколько дополнительных. Затем она помещает в буфер требующуюся задаче информацию и ставит об этом в известность операционную систему. Операционная система сообщает задаче, что ее запрос выполнен и данные с диска находятся в буфере. При следующем обращении приложения к диску программа кэширования прежде всего проверяет, не находятся ли уже в памяти затребованные данные. Если это так, то она копирует их в буфер; если же их в кэше нет, то запрос на чтение диска передается операционной системе. Когда задача изменяет данные в буфере, они копируются в кэш. В ряде ОС имеется возможность указать в явном виде параметры кэширования, в то время как в других за эти параметры отвечает сама ОС. Так, например, в системе Windows NT нет возможности в явном виде управлять ни объемом файлового кэша, ни параметрами кэширования. В системах Windows 95/98 такая возможность уже имеется, но она представляет не слишком богатый выбор. Фактически мы можем указать только объем памяти, отводимый для кэширования, и объем порции данных (буфер или chunk), из которых набирается кэш. В файле System.ini есть возможность в секции [VCACHE] прописать, например, следующие значения: [vcache] MinFileCache=4096 MaxFileCache-32768 ChunkSize=512 Здесь указано, что минимально под кэширование данных зарезервировано 4 Мбайт оперативной памяти, максимальный объем кэша может достигать 32 Мбайт, а размер данных, которыми манипулирует менеджер кэша, равен одному сектору. В других ОС можно указывать больше параметров, определяющих работу подсистемы кэширования. Помимо описанных действий ОС может выполнять и работу по оптимизации перемещения головок чтения/записи данных, связанного с выполнением запросов от параллельно выполняющихся задач. Время, необходимое на получение данных с магнитного диска, складывается из времени перемещения магнитной головки на требуемый цилиндр и времени ожидания заданного сектора; временем считывания найденного сектора и затратами на передачу этих данных в оперативную память мы можем пренебречь. Таким образом, основные затраты времени уходят на поиск данных. В мультипрограммных ОС при выполнении многих задач запросы на чтение и запись данных могут идти таким потоком, что при их обслуживании образуется очередь. Если выполнять эти запросы в порядке поступления их в очередь, то вследствие случайного характера обращений к тому или иному сектору магнитного диска мы можем иметь значительные потери времени на поиск данных. Напрашивается очевидное решение: поскольку выполнение переупорядочивания запросов с целью минимизации затрат времени на поиск данных можно выполнить очень быстро (практически этим временем можно пренебречь, учитывая разницу в быстродействии центральной части и устройств ввода/вывода), то необходимо найти метод, позволяющий перестраивать очередь запросов оптимальным образом. Изучение этой проблемы позволило найти наиболее эффективные дисциплины планирования. Перечислим известные дисциплины, в соответствии с которыми можно перестраивать очередь запросов на операции чтения/записи данных:
|
Техническое задание на разработку программного обеспечения, используемого... Государственное образовательное учреждение высшего профессионального образования Академия народного хозяйства |
Инструкция по установке программного обеспечения ас «Поликлиника» «Поликлиника» поставляется в виде исполняемых модулей и дополнительного программного обеспечения сторонних производителей на компакт-диске.... |
||
Программа дисциплины «Системное программное обеспечение» для специальности... Программа предназначена для преподавателей, ведущих данную дисциплину, учебных ассистентов и студентов специальности 230101. 65 «Вычислительные... |
Программа дисциплины «Системное программное обеспечение» для специальности... Программа предназначена для преподавателей, ведущих данную дисциплину, учебных ассистентов и студентов специальности 230101. 65 «Вычислительные... |
||
Программа дисциплины «Системное программное обеспечение» для специальности... Программа предназначена для преподавателей, ведущих данную дисциплину, учебных ассистентов и студентов специальности 230101. 65 «Вычислительные... |
Инструкция программное обеспечение для лазерного гравера Qualitech rdca 0 Система управления лазерным гравером включает в себя материнскую плату, lcd дисплей и программное обеспечение. Данная инструкция... |
||
1. Коммерческие условия поставки программного обеспечения Программное обеспечение Adobe, графические и видео редакторы, издательские системы, средства web-разработки 7 |
1. Коммерческие условия поставки программного обеспечения Программное обеспечение Adobe, графические и видео редакторы, издательские системы, средства web-разработки 6 |
||
Техническое задание Предмет закупки: продление лицензий Программное обеспечение для защиты рабочих мест пользователей от вредоносного программного обеспечения |
Лекция 1 Молчанов А. Ю. Системное программное обеспечение. Лабораторный практикум: – спб.: Питер, 2005. – 284 с |
||
Вопросы для подготовки к экзамену по профессиональному модулю пм.... Дисциплины: мдк. 09. 01 Установка и настройка системного программного обеспечения компьютерных систем и комплексов |
2 2 Ключевые вопросы сопровождения программного обеспечения 152 Программная инженерия и сущность инженерного подхода к созданию программного обеспечения 9 |
||
Задачах программирования лабораторный практикум по дисциплине «Системное... Методические указания предназначены для подготовки дипломированных специалистов направления 230100 «Информатика и вычислительная... |
Порядок действий при утрате/повреждении ключа шифрования программного обеспечения ViPNet Client Рением «. dst») программного обеспечения ViPNet Client производится в случае утраты ключевого носителя с записанным ключом шифрования... |
||
Методические рекомендации по выполнению внеаудиторной самостоятельной... ПМ. 01 Разработка программных модулей программного обеспечения для компьютерных систем |
Расчетов за услуги связи «Fastcom» версия 12 Руководство системного... Бпо – Базовое программное обеспечение программное обеспечение фирмы oracle, необходимое для функционирования ппо |
Поиск |