Скачать 1.71 Mb.
|
Определение внутренних дефектов обмоток Эксперименты, проведенные на моделях, показали, что при инфракрасном контроле в ряде случаев могут выявляться: - локальные нагревы в баке трансформаторов, связанные с местным перегревом отдельных катушек обмотки; - перегревы контактных соединений отводов обмоток; - образование застойных зон масла, вызванных разбуханием бумажной изоляции витков, шламообразованием или конструктивными просчетами. Перегревы катушек (как правило, крайних) обусловлены наличием в трансформаторах полей рассеяния, зависящих от номинальной мощности трансформатора, потери от которых достигают 30-50% основных потерь. При наличии значительных полей рассеяния превышения температуры крайних катушек или витков отдельных обмоток над температурой масла могут быть в 1,5-2 раза выше расчетных. В (Л.10) приведены данные по повреждаемости трансформаторов в энергосистемах бывшего Союза. Отмечается, что 22% общего количества отказов обусловлено нарушением изоляции и повреждением обмоток, причем за последние годы участились повреждения старых трансформаторов, имеющих характерные конструктивные дефекты. Так, у автотрансформаторов АОДЦТГ-135000/500 крайние катушки обмотки ВН выполнены с дополнительной изоляцией, которая в процессе эксплуатации разбухает, что ухудшает теплоотвод, увеличивает нагрев провода и соответственно износ витковой изоляции. После потери ее свойств происходят витковые замыкания, переходящие в межкатушечные. У трансформаторов ТДЦГ-180000/220 наблюдаются замыкания параллельных проводов в крайних витках обмотки НН из-за нагрева. Трансформаторам ТДЦ-125000/110 производства СВПО "Трансформатор" свойственны повышенная вибрация металлоконструкций, ненадежная работа переключателей ПБВ и перегрев верхних слоев масла с ускоренным старением изоляции обмоток. Через 15-17 лет работы у этих трансформаторов вырабатывается ресурс по состоянию изоляции обмоток. Выявление внутренних дефектов в трансформаторах путем измерения температуры на поверхности их баков является весьма трудоемкой операцией, зависит от многих факторов (конструкция обмоток, нагрузка, способ охлаждения, внешние климатические факторы, состояние поверхности трансформатора и т.п.) и позволяет выявлять неисправности лишь на поздних стадиях их развития. Существенное влияние на распределение температуры по поверхности бака трансформатора оказывают меры конструктивного характера, использованные заводом-изготовителем по выравниванию потерь в обмотках трансформаторов. Неравномерность распределения этих потерь по обмотке может являться одной из причин возникновения местных перегревов, вызывающих ускоренное старение изоляции отдельных катушек или витков обмоток, а также возникновения локальных нагревов на стенках бака трансформатора (рис.3-4). Рис.3.4. Картина поля рассеяния в двухобмоточном трансформаторе: 1 - магнитопровод; 2 - прессующее кольцо; 3 - стенка бака; 4 - обмотка ВН; 5 - нижняя ярмовая балка; 6 - обмотка НН; Вх и Вy - осевая и радиальная составляющие вектора индукции В электрического поля; 7 - локальные места нагрева бака трансформатора Определение работоспособности устройств системы охлаждения трансформатора Снятие термограмм устройств системы охлаждения трансформаторов (дутьевые вентиляторы, маслонасосы, фильтры, радиаторы трансформаторов с естественной циркуляцией масла и т.п.) позволяет оценить их работоспособность и при необходимости принять оперативные меры к устранению неполадок. Маслонасосы Температура нагрева на поверхности корпуса маслонасоса и трубопроводов работающего трансформатора будет практически одинакова. При появлении неисправности в маслонасосе (трения крыльчаток, витковое замыкание в обмотке электродвигателя и т.п.) температура на поверхности корпуса маслонасоса должна повыситься и будет превышать температуру на поверхности маслопровода. Дутьевые вентиляторы Оценка теплового состояния электродвигателей вентиляторов осуществляется сопоставлением измеренных температур нагрева. Причинами повышения нагрева электродвигателей могут быть: неисправность подшипников качения, неправильно выбранный угол атаки крыльчатки вентилятора, витковое замыкание в обмотке электродвигателя и т.п. Термосифонные фильтры При ИК-контроле можно судить о работоспособности термосифонных фильтров (ТФ) трансформаторов. Как известно, ТФ предназначен для непрерывной регенерации масла в процессе работы трансформатора. Движение масла через фильтр с адсорбентом происходит под действием тех же сил, которые обеспечивают движение масла через охлаждающие радиаторы, т.е. разностей плотности горячего и холодного масла. ТФ подсоединен параллельно трубам радиатора системы охлаждения, поэтому у работающего фильтра температуры на входе и выходе, если трансформатор нагружен, должны различаться между собой. В налаженном фильтре будет иметь место плавное повышение температуры по его высоте. При использовании мелкозернистого силикагеля, шламообразования в фильтре, случайном закрытии задвижки на трубопроводе фильтра, при работе трансформатора в режиме х.х. циркуляция масла в фильтре будет незначительна или отсутствовать вообще. В этих случаях температура на входе и выходе фильтра будет практически одинакова. Переключающие устройства Переключающие устройства серии РНТ и им подобные, встраиваемые в трансформаторы, состоят из переключателя и реактора, расположенных в баке трансформатора, а также контактора. Контактор переключающего устройства размещается в отдельном кожухе, расположенном на стенке бака трансформатора и залитом маслом. Контроль состояния контактов переключателя ввиду его глубинного расположения в баке трансформатора весьма проблематичен. При перегреве контактов контактора ввиду небольшого объема залитого в него масла на стенках бака контактора будут иметь место локальные нагревы. Радиаторы Неисправность плоского крана радиатора или ошибочное его закрытие приведет к перекрытию протока масла через радиатор. В этом случае температура труб радиаторов будет существенно ниже, нежели у работающего радиатора. С течением времени в эксплуатации поверхности труб радиаторов подвергаются воздействию ржавчины, на них оседают продукты разложения масла и бумаги, что порой приводит к уменьшению сечения для протока масла или полному его прекращению. Трубы с подобными отклонениями будут "холоднее" остальных. Датчик температуры Практически единственным критерием оценки эффективности работы системы охлаждения является температура верхних слоев масла трансформатора, измеряемая с помощью термометров, либо термометрического сигнализатора с электроконтактным манометром, либо дистанционного термометра сопротивления, устанавливаемых в карманах (гильзах) крышки бака. Контроль температуры масла в этих случаях может быть связан с существенными погрешностями, которые обусловлены инструментальной точностью измерения, местом размещения гильзы и другими факторами. Поэтому при термографическом обследовании трансформатора необходимо также сравнивать значения температур на крышке бака, измеренные тепловизором, с данными датчика температуры. Поверхности бака трансформатора Снятие температурных профилей бака трансформатора в горизонтальном и вертикальном направлениях и сопоставление их с конструктивными особенностями трансформатора (расположение обмоток, отводов, элементов охлаждения и т.п.), пофазное сравнение полученных данных в зависимости от длительности эксплуатации и режима работы позволяет в ряде случаев получить дополнительную информацию о характере протекания тепловых процессов в баке трансформатора. При термографическом обследовании трансформатора необходимо оценивать как значения температур, так и их распределение по фазам. Так, термограмма, снятая в Комиэнерго на трансформаторе мощностью 60 МВ·А, работающем с нагрузкой 30% номинальной, показывает, что циркуляция масла в зимний период (t = -15 °С) происходит лишь в верхней части средней обмотки. Температура на поверхности крайних фаз составляет 2-3 °С, в средней фазе трансформатора 13 °С, т.е. масло в крайних фазах при малых нагрузках практически не циркулирует. Методика ИК-контроля Термографическое обследование трансформатора во многом является вспомогательным средством оценки его теплового состояния и исправности в работе связанных с ним систем и узлов. Термографическому обследованию трансформатора должно предшествовать ознакомление с конструкцией выполнения обмоток, системы охлаждения, результатами работы трансформатора, объемом и характером выполнявшихся ремонтных работ, длительностью эксплуатации, анализом повреждений трансформаторов идентичного исполнения (если они происходили), результатами эксплуатационных испытаний и измерений и т.п. Поверхности баков трансформаторов, термосифонных фильтров, систем охлаждения должны быть осмотрены и с них по возможности должны быть удалены грязь, следы масла, закрашена ржавчина, т.е. созданы условия для обеспечения одинаковой излучательной способности поверхностей трансформатора. Обследование предпочтительно проводить ночью (перед восходом солнца), при отключенном искусственном освещении трансформатора, в безветренную, недождливую погоду, при максимально возможной нагрузке и в режиме х.х. Тепловизор или его сканер должен располагаться на штативе, как можно ближе к трансформатору, на оси средней фазы, с использованием объектива 7-12 °С и обеспечивать возможность как видео-, так и аудиозаписи. После настройки температурного режима записи тепловизора ведется покадровая регистрация термоизображений начиная с верхней части крайней фазы (например А) по направлению к фазе С с наложением кадров друг на друга около 10% размера. Достигнув поверхности бака фазы С, объектив сканера опускается ниже, далее покадровая съемка продолжается в противоположном направлении, таким образом процесс съемки ведется, пока не будет записана вся поверхность бака, включая расположенные под его днищем маслонасосы, маслопроводы и другие узлы. Термографической съемке подвергается вся доступная для этого поверхность бака по периметру. Тепловизор (2) во всех точках съемки должен находиться на одинаковом расстоянии от трансформатора (1). Термограмма поверхности бака автотрансформатора АТДЦТН-135 МВ·А 300 кВ с замыканием стяжных шпилек Термограмма поверхности бака силового трансформатора при отсутствии внутренних дефектов теплового характера Фрагмент поверхности бака со стороны обмотки 500 кВ Фрагмент поверхности бака со стороны обмотки 220 кВ Термограмма поверхности бака автотрансформатора АОДЦТН-267 МВ·А 500/220 кВ с замыканием нижней консоли магнитопровода на бак Термограммы поверхностей баков автотрансформаторов 500 кВ
Распределение температуры по высоте бака АТ-1 (Ось ввода 500 кВ) показывает на очаг внутреннего нагрева в зоне отвода обмотки 500 кВ Распределение температуры по высоте (профиль 2) и горизонтали (профиль 1) бака АТ-2 показывает, что внутренних дефектов теплового характера в баке нет Автотрансформатор 500 кВ с двумя секциями охладителей, одна из которых не загружена ввиду неполного открытия вентиля Температура в точках: 1 - 12,9 °С (фаза В); 2 - 2,3 °С (фаза А) Циркуляция масла происходит в основном в верхней части средней фазы Термограмма трансформатора, снятая в зимнее время года Определение уровня масла в расширителе трансформатора позволяет в ряде случаев оценить правильность показания датчиков уровня масла. Термограмма расширителя трансформатора Нагрев болтов крепления колокола может свидетельствовать о появлении дополнительных полей рассеяния в результате нарушения связей в магнитопроводе. Нагрев болтов разъема колокола бака трансформатора
Термограмма бака контактора РПН с нагревом контакта одной из фаз На термограмме видно плавное изменение - спад температуры масла по высоте бака. Термограмма бака контактора РПН с исправными контакторами Температура в точках: 1 - 23,8 °С; 2 - 34,0 °С. Нижний вентилятор системы охлаждения перегрет по сравнению с верхним почти на 10 °С. Термограмма дутьевых вентиляторов системы охлаждения трансформаторов Температура в точках: 1 - 47,3 °С; 2 - 40,6 °С. Точка 2 определяет температуру в маслопроводе системы. Температура окружающего воздуха - 20 °С. Термограмма маслонасоса работающего трансформатора Термограммы термосифонных фильтров силовых трансформаторов Температура на входе масла в фильтр - 21,9 °С; на выходе - 17,1 °С. Разность температур масла на входе и выходе фильтра свидетельствует о протекании через него масла. Температуры на входе масла в фильтр и выходе из него практически одинаковы и находятся в пределах 14,3-14,5 °С, что характеризует отсутствие протока масла через фильтр. Минимальное количество точек съемки - 4, максимальное - зависит от расположения и типа системы охлаждения (рис.3-5). Рис.3-5. План термографической съемки трансформатора Так, при установке выносной системы охлаждения (3) количество точек съемки увеличивается до 6. Термографическая съемка сопровождается речевыми комментариями, записываемыми на звуковую дорожку кассеты видеомагнитофона. В комментариях должны отражаться: режим работы трансформатора, ход ведения обследования, описание явлений, фиксируемых тепловизором, и другие события, связанные с видеозаписью. В последующем осуществляется покадровое совмещение результатов съемки в единый развернутый "тепловой" план. Участки плана с аномальными температурами нагрева должны сопоставляться с технической документацией на трансформатор, характеризующей конструктивное расположение отводов обмоток, катушек, зон циркуляции масла, магнитопровода и его элементов и т.п. При проведении планового ИК-контроля состояния трансформатора оценивается работоспособность отдельных его узлов в объеме, указанном в табл.3-7. Таблица 3-7
|
Энергетики и электрификации «еэс россии» департамент научно-технической... Разработано Открытым акционерным обществом "Фирма по наладке, совершенствованию технологии и эксплуатации электростанций и сетей... |
Приказ 13. 07. 2006 №490 Об утверждении и вводе в действие Стандарта ОАО рао «еэс россии» Российское открытое акционерное общество энергетики и электрификации «еэс россии» |
||
Инструкция по проектированию городских электрических сетей рд 34. 20. 185-94 Утверждена: Министерством топлива и энергетики Российской Федерации 07. 07. 94, Российским акционерным обществом энергетики и электрификации... |
Российское открытое акционерное общество энергетики и электрификации... Оэтс и экспертными организациями, выполняющими профильные работы по противокоррозионной защите и базируется на применении международных,... |
||
Методические указания по диагностике развивающихся дефектов трансформаторного... Разработано: Департаментом научно-технической политики и развития рао "еэс россии", Научно-исследовательским институтом электроэнергетики... |
Российское открытое акционерное общество энергетики и электрификации... Необходимые изменения в настоящий стандарт (вызванные новым опытом противокоррозионной защиты трубопроводов тепловых сетей, внедрением... |
||
Методические указания по организации учета топлива на тепловых электростанциях рд 34. 09. 105-96 Утверждено Российским акционерным обществом энергетики и электрификации "еэс россии" 12. 05. 96 г |
Согласовано Департаментом экономики рао "еэс россии" Инструкция предназначена для персонала акционерных обществ энергетики и электрификации (энергосистем) Российской Федерации, проектных... |
||
И электрификации СССР главное научно-техническое управление энергетики и электрификации Производственное объединение по наладке, совершенствованию технологии и эксплуатации электростанций и сетей "союзтехэнерго" |
Департамент научно-технической политики и развития Разработано открытым акционерным обществом "Фирма по наладке, совершенствованию технологии и эксплуатации электростанций и сетей... |
||
Справочник содержит новые квалификационные характеристики, связанные... Российское открытое акционерное общество энергетики и электрификации "еэс россии" |
Приказ 08. 10. 2003 №521 Об обеспечении сбора данных коммерческого... Российское открытое акционерное общество энергетики и электрификации ОАО рао «еэс россии» |
||
Департамент научно-технической политики и развития технические требования... Разработано Открытым акционерным обществом "Фирма по наладке, совершенствованию технологии и эксплуатации электростанций и сетей... |
Департамент научно-технической политики и развития технические требования... Разработано Открытым акционерным обществом "Фирма по наладке, совершенствованию технологии и эксплуатации электростанций и сетей... |
||
Стратегия развития здравоохранения Российской Федерации на долгосрочный период 2015 – 2030 гг Положения настоящей Стратегии определяют приоритеты и основные направления государственной политики и нормативно-правового регулирования... |
Стратегия Российской Федерации в области развития науки и инноваций... Использование результатов научно-технической деятельности и объектов интеллектуальной собственности имеет первостепенное значение... |
Поиск |