Энергетики и электрификации «еэс россии» департамент стратегия развития и научно-технической политики основные положения


Скачать 1.71 Mb.
Название Энергетики и электрификации «еэс россии» департамент стратегия развития и научно-технической политики основные положения
страница 8/16
Тип Регламент
rykovodstvo.ru > Руководство эксплуатация > Регламент
1   ...   4   5   6   7   8   9   10   11   ...   16

Трансформаторы тока серии ТФРМ

Повреждение ТТ 330 кВ с рымовидной обмоткой (ТФРМ-330) обусловлено пробоем основной изоляции вблизи тройников с перекрытием на цоколь, а также пробоем основной изоляции верхней части рымовидной обмотки (рис.3-27) в результате увлажнения бумажно-масляной изоляции в процессе эксплуатации или ее неудовлетворительной термовакуумной обработки.


- характерные зоны пробоя внутренней изоляции обмотки трансформаторов тока серии ТФРМ (в верхней части рыма и в тройнике). Выявление дефектов в этих зонах возможно по локальным нагревам на поверхности металлического маслорасширителя.
Рис.3-27. Трансформатор тока 330 кВ герметичного исполнения с рымовидной обмоткой:

1 - эластичная емкость; 2 - маслорасширитель; 3 - изоляция вторичной обмотки;

4 - трансформаторное масло; 5 - фарфоровая покрышка; 6 - вывод первичной обмотки
Аварии с ТТ ТФРМ-330 происходят преимущественно в жаркий летний период и носят тепловой характер. В качестве примера можно привести "вспышку" аварийности ТT ТФРМ-330 в июне 1991 г. в Витебскэнерго, где за две недели повредились 3 трансформатора этого исполнения.

Традиционная проверка состояния изоляции этих ТТ, проводившаяся накануне аварии, не выявила аномальных явлений.

Вскрытие поврежденных ТТ показало, что процесс развития теплового пробоя носил длительный характер с образованием "кратеров" в верхней части рымовидной обмотки.

Максимальные температуры при номинальной нагрузке имеют место на первичной обмотке, отделенной слоем масла от конденсаторной бумажно-масляной изоляции вторичных обмоток.

Для ТТ 330 кВ превышение температуры составляет: у первичной 51 °С, внешней перемычки переключателя коэффициента трансформации - 35 °С, верхних слоев масла - 33 °С и вторичных обмоток - 28 °С.
Трансформаторы тока серии ТФЗМ

Трансформаторы тока (ТТ) серии ТФЗМ (ранее серия ТФН) (рис.3-28) со звеньевой обмоткой имеют защиту внутренней изоляции от увлажнения в виде выносного воздухоосушителя, эффективность которого весьма относительна. Процесс накопления влаги в ТТ звеньевого типа при наличии воздухоосушительного фильтра происходит относительно медленно и является результатом конденсации влаги из воздуха, находящегося в надмасляном пространстве расширителя. Скорость повышения tg бумажно-масляной изоляции ТТ 110 кВ составляет примерно 0,2% в год.

Рис.3-28. Трансформатор тока 110 кВ звеньевого типа:

1 - локальный нагрев в зоне расположения переключателя внутри фарфоровой покрышки или металлического расширителя; 2 - локальный нагрев на поверхности фарфоровой покрышки при ухудшении состояния изоляции между первичной и вторичной обмотками;

- характерное место пробоя изоляции между обмотками
Многолетний опыт эксплуатации этих ТТ на напряжение 35-220 и 500 кВ показывает, что повреждаемость их невелика и обусловлена, в основном, старением внутренней изоляции и на пределе гарантированного срока службы (20-25 лет) обусловлена тепловыми пробоями, происходящими в летний период года. Трансформаторы этой серии могут иметь внутренние переключающие устройства для изменения коэффициента трансформации (рис.3-29). В эксплуатации отмечаются случаи ухудшения состояния внутренних переключающих устройств в результате ослабления болтовых соединений и повышения переходного сопротивления.

Рис.3-29. Переключатель трансформатора тока для четырех секций первичной обмотки

Нагрев внутреннего переключателя трансформатора тока 110 кВ со звеньевой обмоткой

Методика ИК-контроля

Расчеты и опыт, накопленный при ИК-контроле состояния внутренней изоляции и токоведущих частей маслонаполненных ТТ, показывает:

- ИК-контроль состояния внутренней изоляции ТТ необходимо производить в ночное время суток для исключения влияния солнечной радиации, при минимальной скорости ветра, отсутствии тумана и дождя;

- с учетом объема внутренней изоляции трансформаторов тока установившийся тепловой режим обычно достигается не ранее суток после включения;

- имеется связь между значением tg внутренней (основной) изоляции и температурой на поверхности покрышки ТТ. Увеличение tg основной изоляции на 1% приводит к повышению температуры на поверхности покрышки на 0,1 °С.

С учетом предельных нормативных значений tg основной изоляции трансформаторов тока можно ожидать на поверхности фарфоровых покрышек следующие температуры:

- для трансформаторов тока серии ТФУМ и ТФРМ - 0,1-0,2 °С;

- для трансформаторов тока серии ТФЗМ - 0,3-1,0 °С (в зависимости от класса изоляции обмоток).

Существенное влияние на результаты тепловизионного контроля ТТ, учитывая малые значения измеряемых температур, оказывает коэффициент излучения материала Е.

Поэтому целесообразно проводить сравнение полученных при тепловизионном контроле результатов пофазно.

Необходимо также перед проведением ИК-контроля производить осмотр состояния поверхности фарфоровых покрышек и металлических кожухов на предмет выявления участков, имеющих разную излучательную способность (ржавчина, подтеки масла, грязь и т.п.).

Для того чтобы избежать влияния короны на результаты измерения, желательно использовать при ИК-контроле тепловизоры со спектральным диапазоном 8-12 мкм. Как известно, значение температуры на поверхности фарфоровых покрышек ТТ определяется как теплопередачей от меди обмотки, обусловленной нагревом ее рабочим током, так и диэлектрическими потерями в изоляции.

Для исключения влияния первого фактора целесообразно тепловизионный контроль ТТ осуществлять без нагрузки, при нахождении их только под рабочим напряжением. В сомнительных случаях для уточнения характера выявленного дефекта совместно с тепловизионным обследованием ТТ ТФУМ-330 может быть использован ультрафиолетовый дефектоскоп "Филин-5".

С его помощью можно оценить пофазно характер распределения напряженности электрического поля по высоте покрышек.

Наряду с определением с помощью тепловизора состояния внутренней изоляции обмоток маслонаполненных ТТ производится также измерение температуры нагрева в местах подсоединения внешних цепей зажимов ТТ и оценка состояния внутреннего переключающего устройства.

В первом случае используют в качестве критериев предельные температуры нагрева (превышение температуры), регламентированные ГОСТ 8024-90. Нагрев контактов переключающего устройства вызовет появление повышенной температуры на поверхности расширителя.

Оценка состояния внутренних переключающих устройств ТТ должна осуществляться путем сравнения между собой температур на поверхности расширителя трех фаз.
Маслонаполненные вводы 110 кВ и выше

По виду выполнения внутренней изоляции маслонаполненные вводы делятся на маслобарьерные, с конденсаторной бумажно-масляной изоляцией, с конденсаторной твердой изоляцией; по степени защиты внутренней изоляции от атмосферных влияний - на негерметичные и герметичные и т.п.

Характерной особенностью конструктивного исполнения ввода ВН является размещение его на силовом трансформаторе или МВ и отсутствие возможности наблюдения за нижней частью ввода, составляющей примерно 20-50% его высоты в зависимости от номинального напряжения последнего.

Последнее во многом осложняет возможность получения достаточной информации о состоянии изоляции ввода при проведении его тепловизионного контроля.

Это связано с тем, что при ухудшении состояния внутренней изоляции ввода за счет ее увлажнения или разложения масла тяжелые фракции (влага, шлам и т.п.) скапливаются прежде всего в нижней части ввода.

Сказанное подтверждается измерениями, проведенными на одном из забракованных вводов 110 кВ с бумажной изоляцией.

При измерении tg в зонах по высоте бумажного остова ввода было получено следующее распределение:

I зона (нижняя часть) - 17,8%; II зона - 1,6%; III зона - 2,0%; IV зона (верхняя часть) - 3,5%.
Методика ИК-контроля

Практика показывает, что при проведении ИК-диагностики можно выявлять следующие виды неисправностей во вводах:

A. Нагревы в местах подсоединений внешних проводников к зажимам вводов.

В этом случае оценка состояния контактного соединения должна осуществляться по ГОСТ 8024-90.

Б. Образование короткозамкнутых контуров в расширителях герметичных вводов.

Этот дефект свойствен некоторым партиям вводов ГБМТ-220/2000. Наличие короткозамкнутого контура внутри расширителя вызывает нагрев последнего и приводит к преждевременному старению резиновой прокладки, расположенной между фарфоровой покрышкой и поддоном расширителя. Температура на поверхности корпуса расширителя зависит от тока, протекающего через ввод, и температуры окружающего воздуха.

B. Нагревы внутренних контактных соединений вводов.

Ряд конструкций маслонаполненных вводов старых исполнений имел в маслорасширителях внутренние контактные соединения. Так, у маслобарьерных вводов 110 кВ (заводской чертеж 669, 146 и др.) (рис.3-30) в результате некачественной пайки отвода 5 к наконечнику 2 происходит чрезмерный нагрев, в результате которого не исключено выплавление отвода из наконечника.

Рис.3-30. Контактный зажим ввода МТУ-120/600:

1 - контактный зажим; 2 - наконечник ввода; 3 - втулка; 4 - медная труба; 5 - отвод обмотки
У маслонаполненных вводов 110 кВ (заводской чертеж № 132-0-0) негерметичного исполнения в результате ослабления "натяга" в резьбовом соединении контактный зажим - токоведущая труба возможно образование дополнительного нагрева (рис.3-31).

Рис.3-31. Верхний зажим ввода МВ-110/1000 (заводской чертеж № 132-0-0):

1 - контактный зажим;

2 - корпус расширителя;

3 - токоведущая труба
Аналогичный дефект конструкции имеют вводы 500 кВ, изготовленные по заводским чертежам № 179-0-0 и № 206-0-0 (рис.3-32). Маслобарьерные вводы 220 кВ (заводской чертеж № 200-0-0) выпуска до 1968 г. имеют внутри расширителя токоведущие гибкие связи, соединяющие контактный зажим ввода с токоведущей трубой (рис.3-33). Ослабление болтовых соединений этого контактного узла приводило к повреждениям вводов в результате перегорания гибких связей. При ИК-диагностике маслонаполненных вводов указанных выше конструктивных исполнений необходимо оценивать значения температурных градиентов как на контактном зажиме, так и на поверхности корпуса маслорасширителей.

Рис.3-32. Верхний зажим ввода 220 кВ:

1 - контактный наконечник;

2 - втулка;

3 - токоведущая труба

Рис.3-33. Контактный узел ввода 220 кВ:

1 - гибкая скоба; 2 - токоведущая труба; 3 - диск; 4 - лопатка диска; 5 - коробчатая шайба
Г. Понижение уровня масла во вводах.

В 1994 г. в Кузбассэнерго при ИК-диагностике мощного автотрансформатора был выявлен ввод 500 кВ ГБМТ-500/1600 (заводской чертеж № 247.800.011) с пониженным уровнем масла в фарфоровой покрышке. По ряду причин утечка масла через нижнее уплотнение ввода не была зафиксирована по манометру.

Критерием выявления подобной неисправности может служить характер изменения температурных градиентов по высоте ввода.

При наличии во вводе полного объема масла имеет место плавное снижение температурных градиентов от бака трансформатора к расширителю ввода (рис.3-34, кривая А).

Рис.3-34. Характер распределения температуры по высоте маслонаполненного ввода при:

А - наличии к.з. контура в маслорасширителе; Б - нагреве внутренних контактных соединений; В - пониженном уровне масла во вводе; Г - оголенном токоведущем стержне в верхней части ввода; Д - нарушении циркуляции масла во вводе (разбухание бумажной оплетки, шламообразование и т.п.); Е - нанесении бумажной изоляции по всей высоте токоведущего стержня; Ж - увлажнении верхней части изоляционного остова и повышенных диэлектрических потерях

Нагрев маслорасширителя герметичного ввода ГБМТ-220/2000 в образования короткозамкнутого контура в сильфонном устройстве

Термограмма негерметичного маслонаполненного вода 110 кВ MB:

1,3 - температурные градиенты соответственно в верхней (1,2 °С) и нижней (2,1 °С) частях ввода; 4,5 - то же (-3,6 °С) и (-1,8 °С) для исправного ввода. Справа на термограмме показан термопрофиль дефектного ввода
При пониженном уровне масла во вводе зависимость T = f (h) резко изменяется на уровне столба масла во вводе.

Д. Увлажнение верхней части остова ввода.

При нарушении герметизации элементов маслорасширителя негерметичного ввода внутрь последнего может проникнуть влага, которая в последующем вызовет увлажнение верхней части бумажного остова ввода с протеканием тока утечки, образованием проводящих "дорожек", их нагревом и т.п. На определенном этапе развития этого процесса можно выявить очаг возникновения частичного разряда внутри ввода по характеру аномального нагрева на поверхности фарфоровой покрышки.
Конденсаторы связи и делительные

Конденсаторы связи и делительные конденсаторы воздушных выключателей являются герметичной конструкцией и представляют собой наборы конденсаторных секций, соединенных последовательно-параллельно, уложенных в фарфоровую покрышку и залитых специальным маслом.

Отбраковка конденсаторов в эксплуатации по результатам измерения tg производится крайне редко.

В принципе измерение tg у конденсаторов целесообразно осуществлять лишь по результатам ИК-контроля.

Последнее обусловлено достаточно высокой емкостью конденсаторов, что вызывает при увеличении их tg достаточно высокие температуры на поверхности фарфоровых покрышек.

Трансформаторы этого типа состоят из четырех установленных в колонку элементов, каждый из которых зашунтирован конденсатором ДМР-70. На термограмме видно, что второй элемент конденсатора сверху имеет внутри секцию с повышенными диэлектрическими потерями, что подтверждает построенный термопрофиль.

Термограмма трансформатора напряжения НКФ-400
Расчеты показывают, что в среднем увеличение tg на 0,1% вызывает повышение температуры на поверхности фарфоровой покрышки конденсатора на 2-3 °С.
Элементы БСК

Возможными дефектами конденсаторных батарей могут быть: пробой секции элементов, увеличение tg их внутренней изоляции, чрезмерный нагрев соединительных проводников.

В первом случае происходит перегорание защитных плавких вставок и отключение конденсатора.

При инфракрасном контроле такой конденсатор будет иметь температуру, по существу не отличающуюся от температуры окружающей среды. Увеличение tg внутренней изоляции элемента конденсатора приведет к резкому росту его температуры, поэтому на экране тепловизора такой элемент будет выглядеть значительно ярче остальных.

В ряде случаев ввиду дефицита конденсаторов в фазах БСК используются конденсаторы разной емкости, что вызывает перераспределение напряжения между конденсаторами фазы. Последнее вызывает дополнительный нагрев перегруженных по напряжению конденсаторов.

Сказанное должно учитываться при ИК-контроле конденсаторов БСК. Сложность инфракрасного обследования элементов конденсаторных батарей заключается в необходимости диагностирования большого количества элементов (несколько тысяч штук), расположенных к тому же на разных ярусах и рядах. Поэтому инфракрасный контроль должен использоваться лишь в качестве вспомогательного для суждения о состоянии элементов батарей и контактных соединений проводников, подсоединенных к ним, для определения объема ремонтных работ.

Дальнейший контроль проводится на отключенной батарее с помощью традиционных методов.
1   ...   4   5   6   7   8   9   10   11   ...   16

Похожие:

Энергетики и электрификации «еэс россии» департамент стратегия развития и научно-технической политики основные положения icon Энергетики и электрификации «еэс россии» департамент научно-технической...
Разработано Открытым акционерным обществом "Фирма по наладке, совершенствованию технологии и эксплуатации электростанций и сетей...
Энергетики и электрификации «еэс россии» департамент стратегия развития и научно-технической политики основные положения icon Приказ 13. 07. 2006 №490 Об утверждении и вводе в действие Стандарта ОАО рао «еэс россии»
Российское открытое акционерное общество энергетики и электрификации «еэс россии»
Энергетики и электрификации «еэс россии» департамент стратегия развития и научно-технической политики основные положения icon Инструкция по проектированию городских электрических сетей рд 34. 20. 185-94
Утверждена: Министерством топлива и энергетики Российской Федерации 07. 07. 94, Российским акционерным обществом энергетики и электрификации...
Энергетики и электрификации «еэс россии» департамент стратегия развития и научно-технической политики основные положения icon Российское открытое акционерное общество энергетики и электрификации...
Оэтс и экспертными организациями, выполняющими профильные работы по противокоррозионной защите и базируется на применении международных,...
Энергетики и электрификации «еэс россии» департамент стратегия развития и научно-технической политики основные положения icon Методические указания по диагностике развивающихся дефектов трансформаторного...
Разработано: Департаментом научно-технической политики и развития рао "еэс россии", Научно-исследовательским институтом электроэнергетики...
Энергетики и электрификации «еэс россии» департамент стратегия развития и научно-технической политики основные положения icon Российское открытое акционерное общество энергетики и электрификации...
Необходимые изменения в настоящий стандарт (вызванные новым опытом противокоррозионной защиты трубопроводов тепловых сетей, внедрением...
Энергетики и электрификации «еэс россии» департамент стратегия развития и научно-технической политики основные положения icon Методические указания по организации учета топлива на тепловых электростанциях рд 34. 09. 105-96
Утверждено Российским акционерным обществом энергетики и электрификации "еэс россии" 12. 05. 96 г
Энергетики и электрификации «еэс россии» департамент стратегия развития и научно-технической политики основные положения icon Согласовано Департаментом экономики рао "еэс россии"
Инструкция предназначена для персонала акционерных обществ энергетики и электрификации (энергосистем) Российской Федерации, проектных...
Энергетики и электрификации «еэс россии» департамент стратегия развития и научно-технической политики основные положения icon И электрификации СССР главное научно-техническое управление энергетики и электрификации
Производственное объединение по наладке, совершенствованию технологии и эксплуатации электростанций и сетей "союзтехэнерго"
Энергетики и электрификации «еэс россии» департамент стратегия развития и научно-технической политики основные положения icon Департамент научно-технической политики и развития
Разработано открытым акционерным обществом "Фирма по наладке, совершенствованию технологии и эксплуатации электростанций и сетей...
Энергетики и электрификации «еэс россии» департамент стратегия развития и научно-технической политики основные положения icon Справочник содержит новые квалификационные характеристики, связанные...
Российское открытое акционерное общество энергетики и электрификации "еэс россии"
Энергетики и электрификации «еэс россии» департамент стратегия развития и научно-технической политики основные положения icon Приказ 08. 10. 2003 №521 Об обеспечении сбора данных коммерческого...
Российское открытое акционерное общество энергетики и электрификации ОАО рао «еэс россии»
Энергетики и электрификации «еэс россии» департамент стратегия развития и научно-технической политики основные положения icon Департамент научно-технической политики и развития технические требования...
Разработано Открытым акционерным обществом "Фирма по наладке, совершенствованию технологии и эксплуатации электростанций и сетей...
Энергетики и электрификации «еэс россии» департамент стратегия развития и научно-технической политики основные положения icon Департамент научно-технической политики и развития технические требования...
Разработано Открытым акционерным обществом "Фирма по наладке, совершенствованию технологии и эксплуатации электростанций и сетей...
Энергетики и электрификации «еэс россии» департамент стратегия развития и научно-технической политики основные положения icon Стратегия развития здравоохранения Российской Федерации на долгосрочный период 2015 – 2030 гг
Положения настоящей Стратегии определяют приоритеты и основные направления государственной политики и нормативно-правового регулирования...
Энергетики и электрификации «еэс россии» департамент стратегия развития и научно-технической политики основные положения icon Стратегия Российской Федерации в области развития науки и инноваций...
Использование результатов научно-технической деятельности и объектов интеллектуальной собственности имеет первостепенное значение...

Руководство, инструкция по применению




При копировании материала укажите ссылку © 2024
контакты
rykovodstvo.ru
Поиск