Синтезируя десятки определений искусственного интеллекта из различных источников качестве рабочего определения можно предложить следующее.
Искусственный интеллект — это одно из направлений информатики, целью которого является разработка аппаратно-программных средств, позволяющих пользователю-непрограммисту ставить и решать свои, традиционно считающиеся интеллектуальными задачи, общаясь с ЭВМ на ограниченном подмножестве естественного языка.
При воссоздании разумных рассуждений и действий возникают определенные трудности. Во-перовых в большинстве случаев, выполняя какие-то действия, человек не осознает, как это делает, не известен точный способ, метод или алгоритм понимания текста, распознавания лиц, доказательств теорем, решения задач, сочинения стихов и т.д. Во-вторых, на современном уровне развития компьютер слишком далек от человеческого уровня компетентности и работает по другим принципам.
Искусственный интеллект всегда был междисциплинарной наукой, являясь одновременно и наукой и искусством, и техникой и психологией. Методы искусственного интеллекта разнообразны. Они активно заимствуются из других наук, адаптируются и изменяются под решаемую задачу. Для создания интеллектуальной системы необходимо привлекать специалистов из прикладной области, в рамках искусственного интеллекта сотрудничают лингвисты, нейрофизиологи, психологи, экономисты, информатики, программисты и т.д.
История развития искусственного интеллекта
Идея создания искусственного подобия человека для решения сложных задач и моделирования человеческого разума витала в воздухе еще в древнейшие времена. Так, в древнем Египте была создана «оживающая» механическая статуя бога Амона. У Гомера в «Илиаде» бог Гефест ковал человекоподобных существ.
Искусственный интеллект является в некотором смысле наукой будущего, в которой нет жесткого разделения по областям и ясно видна связь между отдельными дисциплинами, которые лишь отражают определенную грань познания.
Точный свод законов, руководящих рациональной частью мышления, был сформулирован Аристотелем (384-322 годы до н.э.) Однако родоначальником искусственного интеллекта считается средневековый испанский философ, математик и поэт Раймонд Луллий, который еще в XIII веке попытался создать механическую машину для решения различных задач, на основе разработанной им всеобщей классификации понятий. В XVIII веке Лейбниц и Декарт независимо друг от друга продолжили эту идею, предложив универсальные языки классификации всех наук. Эти работы можно считать первыми теоретическими работами в области искусственного интеллекта.
Теория игр и теория принятия решений, данные о строении мозга, когнитивная психология – все это стало строительным материалом для искусственного интеллекта. Но окончательное рождение искусственного интеллекта как научного направления произошло только после создания ЭВМ в 40-х годах XX века и выпуска Норбертом Винером основополагающих работ по новой науке — кибернетике.
Формирование искусственного интеллекта как науки произошло
в 1956 году. Д. Маккарти, М. Минский, К. Шеннон и Н. Рочестер организовали двухмесячный семинар в Дартмуте для американских исследователей, занимающихся теорий автоматов, нейронными сетями, интеллектом. Хотя исследования в этой области уже активно велись, но именно на этом семинаре появились термин и отдельная наука – искусственный интеллект.
Одним из основателей теории искусственного интеллекта считается известный английский ученый Алан Тьюринг, который в 1950-м году опубликовал статью «Вычислительные машины и разум» (переведенную на русский язык под названием «Может ли машина мыслить?»). Именно в ней описывался, ставший классическим «тест Тьюринга», позволяющий оценить «интеллектуальность» компьютера по его способности к осмысленному диалогу с человеком.
Первые десятилетия развития (1952-1969)
искусственного интеллекта были полны успехов и энтузиазма. А. Ньюэлл, Дж. Шоу и Г. Саймон создали программу для игры в шахматы, на основе метода, предложенного в 1950 году К. Шенноном, формализованного А. Тьюрингом и промоделированного им же вручную. К работе была привлечена группа голландских психологов под руководством А. де Гроота, изучавших стили игры выдающихся шахматистов. В 1956 году этим коллективом был создан язык программирования ИПЛ1 - практически первый символьный язык обработки списков и написана первая программа "Логик-Теоретик", предназначенная для автоматического доказательства теорем в исчислении высказываний. Эту программу можно отнести к первым достижениям в области искусственного интеллекта.
В 1960 году этой же группой написана программа GPS (General Problem Solver) - универсальный решатель задач. Она могла решать ряд головоломок, вычислять неопределенные интегралы, решать некоторые другие задачи. Эти результаты привлекли внимание специалистов в области вычислений и появились программы автоматического доказательства теорем из планиметрии и решения алгебраических задач.
С 1952 года А. Самюэл написал ряд программ для игры в шашки, которые играли на уровне хорошо подготовленного любителя, причем одна из его игр научилась играть лучше, чем ее создатель.
В 1958 году Д. Маккарти определил новый язык высокого уровня Lisp, который стал доминирующим для искусственного интеллекта.
Первые нейросети появились в конце 50-х годов. В 1957 году Ф. Розенблаттом была предпринята попытка создать систему, моделирующую человеческий глаз и его взаимодействие с мозгом - перцептрон.
Первая международная конференция по искусственному интеллекту (IJCAI) состоялась в 1969 году в Вашингтоне.
В 1963 г. Д. Робинсон реализовал метод автоматического доказательства теорем, получивший название «принцип резолюции», в основе этого метода в 1973 году создается язык логического программирования Prolog
.
В США появились первые коммерческие системы, основанные на знаниях, -
экспертные системы. Происходит коммерциализация искусственного интеллекта. Растут ежегодные капиталовложения и интерес к
самообучающимся системам, создаются промышленные экспертные системы. Разрабатываются методы представления знаний.
Первая экспертная система была создана Э. Фейгенбаумом в 1965 году. Но до коммерческой прибыли было еще далеко. Лишь в 1986 году первая коммерческая система R1 компании DEC позволила сэкономить примерно 40 миллионов долларов в год. К 1988 году компанией DEC было развернуто 40 экспертных систем. В компании Du Pont применялось 100 систем и экономия составляла примерно 10 миллионов в год.
В 1981 году Япония приступила к разработке компьютера 5-го поколения, основанного на знаниях – 10-летнего плана по разработке интеллектуальных компьютеров на базе Prolog. 1986 год стал годом возрождения интереса к нейронным сетям.
В 1991 году Япония прекращает финансирование проекта компьютера 5-го поколения и начинает проект создания компьютера 6-го поколения – нейрокомпьютера.
В 1997 году компьютер «Дип Блю» победил в игре в шахматы чемпиона мира Г. Каспарова, доказав возможность того, что искусственный интеллект может сравняться или превзойти человека в ряде интеллектуальных задач (пусть и в ограниченных условиях).
Огромную роль в борьбе за признание искусственного интеллекта в нашей стране сыграли академики А. И. Берг и Г. С. Поспелов.
В 1954-1964 гг. создаются отдельные программы и проводятся исследования в области поиска решения логических задач. Создается программа АЛПЕВ ЛОМИ, автоматически доказывающая теоремы. Она основана на оригинальном обратном выводе Маслова, аналогичном методу резолюций Робинсона. Среди наиболее значимых результатов, полученных отечественными учеными в 60-е годы, следует отметить алгоритм «Кора» М. М. Бонгарда, моделирующий деятельность человеческого мозга при распознавании образов. Большой вклад в становление российской школы искусственного интеллекта внесли выдающиеся ученые М. Л. Цетлин, В. Н. Пушкин, М. А. Гаврилов, чьи ученики и явились пионерами этой науки в России.
В 1964 г. предлагался метод автоматического поиска доказательства теорем в исчислении предикатов, получивший название «обратный метод Маслова».
В 1965-1980 гг. происходит рождение нового направления — ситуационного управления (соответствует представлению знаний, в западной терминологии). Основателем этой научной школы стал проф. Д. А. Поспелов.
В Московском государственном университете был создан язык символьной обработки данных РЕФАЛ В.Ф. Турчиным в 1968.
Задачи искусственного интеллекта
Искусственный интеллект преследует множество целей. Одной из основных задачей искусственного интеллекта является создание полного научного описания интеллекта человека, животного и машины и вычисления принципов, общих для всех троих. Моделирование разума необходимо для решения задач. К интеллектуальным задачам можно отнести все задачи, алгоритм нахождения которых неизвестен. Но, например, перебор всех возможных комбинаций также является алгоритмом. Применить его на практике, к сожаленью, на современном уровне развития техники к большинству задач невозможно (современная ЭВМ не сможет сгенерировать все простые перестановки более чем 12 разных предметов, которых более 479 млн.).
Комбинаторный взрыв, с которым столкнулись исследователи уже в ранних исследованиях – пример этого. В таких случаях, когда незначительное увеличение входных данных задачи ведет к возрастанию количества повторяющихся действий в степенной зависимости, говорят о неполиномиальных алгоритмах, которые характеризуются тем, что количество операций в них возрастает в зависимости от числа входов по закону, близкому к экспоненте. Подобные алгоритмы решения имеет чрезвычайно большой круг задач, особенно комбинаторных проблем, связанных с нахожденим сочетаний, перестановок, размещений каких-либо объектов.
Поэтому труднорешаемой (нерешаемой) задачей можно называть такую задачу, для которой не существует эффективного алгоритма решения. Экспоненциальные алгоритмы решений, в том числе и исчерпывающие, абсолютно неэффективны для случаев, когда входные данные меняются в достаточно широком диапазоне значений, следовательно, в общем случае считать их эффективными нельзя.
Эффективный алгоритм имеет не настолько резко возрастающую зависимость количества вычислений от входных данных, например ограниченно полиномиальную, т.е. х находится в основании, а не в показателе степени. Такие алгоритмы называются полиномиальными, и, как правило, если задача имеет полиномиальный алгоритм решения, то она может быть решена на ЭВМ с большой эффективностью. К ним можно отнести задачи сортировки данных, многие задачи математического программирования и т.п.
Следовательно, современный компьютер не может выполнить решение полностью аналитически. Возможна замена аналитического решения численным алгоритмом, который итеративно (т.е. циклически повторяя операции) или рекурсивно (вызывая процедуру расчета из самой себя) выполняет операции, шаг за шагом приближаясь к решению. Если число этих операций возрастает, время выполнения, а возможно, и расход других ресурсов (например, ограниченной машинной памяти), также возрастает, стремясь к бесконечности. Задачи, своими алгоритмами решения создающие предпосылки для резкого возрастания использования ресурсов, в общем виде не могут быть решены на цифровых вычислительных машинах, т.к. ресурсы всегда ограничены.
Решением подобных задач и занимается искусственный интеллект. Исследователи изучают процессы мышления, разумное поведение для того, чтобы найти методы решения подобных задач, так как человек в своей деятельности сталкивается и ними достаточно часто и успешно решает.
Хотя до сих пор многое задачи не решены, определенные достижения в этой области есть. Исследовали использовали различные подходы и методы, чтобы получить результат. В конце 50-х годов родилась модель лабиринтного поиска и появилась теория распознавания образов, как следствие начала использования ЭВМ для решения невычислительных задач. Начало 60-х годов называют эпохой эвристического программирования, когда использовались стратегии действий на основе известных, заранее заданных эвристик. Эвристики позволяют сокращать количество рассматриваемых вариантов. В середине 60-х годов к решению задач стали активно подключать методы математической логики. С середины 70-х годов исследователи стали уделять внимание системам, основных на экспертных знаниях.
Такие системы применимы к слабоформализуемым задачам. Неформализованные задачи обычно обладают следующими особенностями:
ошибочностью, неоднозначностью, неполнотой и противоречивостью исходных данных;
ошибочностью, неоднозначностью, неполнотой и противоречивостью знаний о проблемной области и решаемой задаче;
большой размерностью пространства решения, т.е. перебор при поиске решения весьма велик;
динамически изменяющимися данными и знаниями.
Тест по теме «История развития искусственного интеллекта»
-
Каковы предпосылки возникновения искусственного интеллекта как науки?
появление ЭВМ
развитие кибернетики, математики, философии, психологии и т.д.
научная фантастика
нет правильного ответа
-
В каком году появился термин искусственный интеллект (artificial intelligence)?
1856
1956
1954
1950
Нет правильного ответа
-
Кто считается родоначальником искусственного интеллекта?
А. Тьюринг
Аристотель
Р. Луллий
Декарт
Нет правильного ответа
4. Кто создал язык Lisp?
В. Ф. Турчин
Д. Маккарти
М. Минский
Д. Робинсон
Нет правильного ответа
6. Кто разработал язык РЕФАЛ?
Д.А. Поспелов
Г. С. Поспелов
В. Ф. Турчин
А. И. Берг
Нет правильного ответа
7. Кто разработал теорию ситуационного управления?
В. Ф. Турчин
Г. С. Поспелов
Д.А. Поспелов
Л. И. Микулич
-
Нет правильного ответа
Чем знаменателен 1964 год для искусственного интеллекта в России?
Создан язык РЕФАЛ
Создана Ассоциация искусственного интеллекта
Разработан метод обратный вывод Маслова
Нет правильного ответа
Литература по теме «История развития искусственного интеллекта»:
Гаврилова Т.А. Проблемы искусственного интеллекта. http://www.big.spb.ru/publications/bigspb/km/problems_ai.shtml
Гаврилова Т.А., Хорошевский В.Ф. Базы знаний интеллектуальных систем. СПб.: Питер, 2001. с. 384.
Лорьер Ж.-Л. Системы искусственного интеллекта. – М.: Мир, 1991. – 568с.
Рассел С., Норвиг П. Искусственный интеллект: современный подход, 2-е изд. – М.: Вильямс, 2006. - с. 1408.
Уитби Б. Искуственный интеллект: реальна ли Матрица. – М.: ФАИР-ПРЕСС, 2004. – с. 224.
Чего не может компьютер, или труднорешаемые задачи искусственного интеллекта. http://www.algoritmy.info/hardtask.html
Ясницкий Л.Н. Введение в искусственный интеллект. - М.: Издательский центр «Академия», 2005. – 176 с.