Газообразное состояние вещества


Скачать 1.64 Mb.
Название Газообразное состояние вещества
страница 6/13
Тип Самостоятельная работа
rykovodstvo.ru > Руководство эксплуатация > Самостоятельная работа
1   2   3   4   5   6   7   8   9   ...   13
Тема: Гидролиз органических и неорганических соединений. Необратимый гидролиз. Обратимый гидролиз солей. Практическое значение гидролиза для получения гидролизного спирта и мыла. Биологическая роль гидролиза в пластическом и энергетическом обмене веществ и энергии в клетке.

Окислительно-восстановительные реакции. Степень окисления. Понятие об окислительно-восстановительных реакциях. Окисление и восстановление, окислитель и восстановитель.

Электролиз. Электролиз как окислительно-восстановительный процесс. Электролиз расплавов и растворов на примере хлорида натрия. Практическое применение электролиза. Электролитическое получение алюминия.

Основные понятия и термины по теме: гидролиз и его виды, электролиз, окислительно-восстановительные реакции, степень окисления, окислитель, восстановитель.

План изучения темы:

(перечень вопросов, обязательных к изучению):

1.Понятие гидролиза и его виды.

2.Практического значение гидролиза.

3. Окислительно-восстановительные реакции. Степень окисления.

4.Электролиз как окислительно-восстановительный процесс. Практическое применение электролиза.
Содержание:
Гидролизом называют разложение вещества с водой, что приводит к образованию слабого электролита. Эта реакция является обратной к реакции нейтрализации.

Гидролизу подвергаются как неорганические, так и органические вещества в результате обменной реакции между молекулами воды и вещества. Реакции гидролиза могут протекать как обратимо, так и необратимо. Гидролиз имеет большое практическое значение и основан на теории, а именно теории протекания химических явлений, теории растворов.

Причиной гидролиза является электролитическая диссоциация соответствующих солей и воды. Вода незначительно диссоциирует на ионы Н+ и ОН, но в процессе гидролиза один или оба из этих ионов могут связываться ионами, образующимися при диссоциации соли, в малодиссоциированные, летучие или труднорастворимые соединения (молекулы или сложные ионы).  Происходит изменение реакции среды.

Электролиты – вещества, проводящие электрический ток в растворенном или расплавленном состоянии. К электролитам относятся вещества, имеющие ионную связь: соли, основания, полярные молекулы кислот.

Гидролиз соли - взаимодействие ионов соли с водой, когда образуется слабый электролит [H+] = [OH-] - среда нейтральная, [H+] > [OH-] - среда кислая, [OH-] > [H+] - среда щелочная.

Процесс гидролиза протекает до тех пор, пока не установится равновесие между ионами соли, водой и продуктами гидролиза.

Чтобы точно определить продукты гидролиза, мы должны знать силу кислот и оснований.

В зависимости от своего состава соли по-разному реагируют с водой, поэтому можно выделить 4 типа гидролиза солей.

1. Соль образована катионом слабого основания и анионом сильной кислоты.

(CuCl2, NH4Cl, Fe2(S04)3 — гидролиз по катиону)

CuCl2 Cu2+ + 2Сl-

Н2О  Н+ + ОН-

Cu2+ + 2Сl- + Н+ + ОН- CuОН+ + Н++ 2Сl-

Выводы: [ Н+] > [ОН-]  pH < 7  среда раствора кислая  окраска индикаторов изменяется

2. Соль образована катионом сильного основания и анионом слабой кислоты.

2С03, Na2S — гидролиз по аниону)

К2С03 2К+ + С032-

Н2О  Н+ + ОН-

+ + С032-+ Н+ + ОН -  НСО3- + 2К+ + ОН-

Выводы: [ Н+] < [ОН-]  pH > 7  среда раствора щелочная  окраска индикаторов изменяется

3. Соль образована катионом слабого основания и анионом слабой кислоты. ((NH4)2CO3, CH3COONH4, Na2CO3 — гидролиз по катиону и по аниону)

Fe2 (C03)3 2Fe 3+ + 3C032-

Н2О  Н+ + ОН-

2Fe 3+ + 3C032-+ Н+ + ОН- Fe (ОН)3+ C02 + Н2О идёт до конца
Выводы: Характер среды определяется относительной силой кислоты и основания.  

4. Соль образована катионом сильного основания и анионом сильной кислоты. (гидролизу не подвергаются (NaCl, К24, Ba(N03)2).

NaCl  Na+ + Сl-

Н2О  Н+ + ОН-

Na+ + Сl- + Н+ + ОН- Na+ + Сl- + Н+ + ОН

Выводы: [ Н+] = [ОН-]  pH = 7  среда раствора нейтральная окраска индикаторов не изменяется

Процесс гидролиза количественно характеризуется степенью гидролиза (h) и константой гидролиза (Кг). Степенью гидролиза называется отношение числа молекул, подвергшихся гидролизу (Сгидр.), к общему числу растворенных молекул (Собщ.):

http://chem-bsu.narod.ru/umk_chem_webcd/lwork/lr8.files/image003.gifСтепень гидролиза зависит от следующих факторов:

1.     природы соли;

2.     ее концентрации;

3.     температуры раствора.                                        

Гидролизу подвергаются только те соли, которые образуют при диссоциации ион от слабого электролита. Соли, образованные сильными основаниями и сильными кислотами гидролизу, не подвергаются.

Разбавление раствора равноценно увеличению концентрации одного из реагирующих веществ (воды) и приводит к усилению гидролиза. Усилению гидролиза способствует: увеличение концентрации исходных веществ, продуктов, добавление спирта, кислоты.

Гидролиз концентрированных растворов происходит слабее. Процесс гидролиза эндотермичен, поэтому с повышением температуры протекает полнее. Следовательно, при гидролизе соблюдается принцип Ле-Шателье.

Роль гидролиза в природе и жизни человека:

в процессах формирования и преобразования земной коры; в создании среды для развития жизни в мировом океане; в народном хозяйстве для производства продуктов из непищевого сырья; в повседневной жизни человека, гидролиз спирта и мыла (стирка, борьба с жесткостью воды, процессы пищеварения), в организме человека: биологическая роль гидролиза в пластическом и энергетическом обмене веществ и энергии в клетке.

Уравнения окислительно-восстановительных реакций.

Многие химические реакции уравниваются простым подбором коэффициентов. Но иногда возникают сложности: количество атомов какого-нибудь элемента в левой и правой частях уравнения никак не удается сделать одинаковым без того, чтобы не нарушить "равновесия" между атомами других элементов. Чаще всего такие сложности возникают в уравнениях окислительно-восстановительных реакций. Для их уравнивания используют несколько способов, из которых мы пока рассмотрим один – метод электронного баланса. Напишем уравнение реакции между алюминием и кислородом: Al + O= Al2O3

Итак, в чем заключается метод электронного баланса? Баланс – это равенство. Поэтому следует сделать одинаковым количество электронов, которые отдает один элемент и принимает другой элемент в данной реакции. Первоначально это количество выглядит разным, что видно из разных степеней окисления алюминия и кислорода:

0

 

0

 

+3 –2

Al

+

O2

=

Al2O3

Алюминий отдает электроны (приобретает положительную степень окисления), а кислород – принимает электроны (приобретает отрицательную степень окисления). Чтобы получить степень окисления +3, атом алюминия должен отдать 3 электрона. Молекула кислорода, чтобы превратиться в кислородные атомы со степенью окисления -2, должна принять 4 электрона:

http://www.hemi.nsu.ru/image18.gif

Чтобы количество отданных и принятых электронов выровнялось, первое уравнение надо умножить на 4, а второе – на 3. Для этого достаточно переместить числа отданных и принятых электронов против верхней и нижней строчки так, как показано на схеме вверху. Если теперь в уравнении перед восстановителем (Al) мы поставим найденный нами коэффициент 4, а перед окислителем (O2) – найденный нами коэффициент 3, то количество отданных и принятых электронов выравнивается и становится равным 12. Электронный баланс достигнут. Видно, что перед продуктом реакции Al2O3 необходим коэффициент 2. Теперь уравнение окислительно-восстановительной реакции уравнено:горение алюминия на воздухе

4Al + 3O= 2Al2O3

Все преимущества метода электронного баланса проявляются в более сложных случаях, чем окисление алюминия кислородом. Например, известная всем "марганцовка" – марганцевокислый калий KMnO4 – является сильным окислителем за счет атома Mn в степени окисления +7. Даже анион хлора Cl отдает ему электрон, превращаясь в атом хлора. Это иногда используют для получения газообразного хлора в лаборатории:

+7

 

–1

 

 

 

0

 

+2

 

 

 

 

KMnO4

+

KCl

+

H2SO4

=

Cl2

+

MnSO4

+

K2SO4

+

H2O

Составим схему электронного баланса: http://www.hemi.nsu.ru/image19.gif

Двойка и пятерка – главные коэффициенты уравнения, благодаря которым удается легко подобрать все другие коэффициенты. Перед Cl2следует поставить коэффициент 5 (или 2·5 = 10 перед KСl), а перед KMnO4 – коэффициент 2. Все остальные коэффициенты привязывают к этим двум коэффициентам. Это гораздо легче, чем действовать простым перебором чисел.

2KMnO4 + 10KCl + 8H2SO4 = 5Cl2 + 2MnSO4 + 6K2SO4 + 8H2O

Чтобы уравнять количество атомов К (12 атомов слева), надо перед K2SO4 в правой части уравнения поставить коэффициент 6. Наконец, чтобы уравнять кислород и водород, достаточно перед H2SO4 и H2O поставить коэффициент 8. Мы получили уравнение в окончательном виде.

Метод электронного баланса, как мы видим, не исключает и обыкновенного подбора коэффициентов в уравнениях окислительно-восстановительных реакций, но может заметно облегчить такой подбор.

Окислительно-восстановительные реакции играют огромную роль в природе и технике. Без этих реакций невозможна жизнь, потому что дыхание, обмен веществ, синтез растениями клетчатки из углекислого газа и воды – все это окислительно-восстановительные процессы.

В технике с помощью реакций этого типа получают такие важные вещества как аммиак (NH3), серную (H2SO4) и соляную (HCl) кислоты и многие другие продукты. Вся металлургия основана на восстановлении металлов из их соединений – руд. Большинство химических реакций– окислительно-восстановительные. Приведем важнейшие определения, связанные с окислительно-восстановительными реакциями.

Реакции, протекающие с изменением степени окисления атомов, входящих в состав реагирующих веществ, называются окислительно-восстановительными.

Окислителями называются вещества, присоединяющие электроны. Во время реакции они восстанавливаются.

Восстановителями называются вещества, отдающие электроны. Во время реакции они окисляются.

Поскольку окислитель присоединяет электроны, степень окисления его атомов может только уменьшаться. Наоборот, восстановитель теряет электроны и степень окисления его атомов должна повышаться.

Окисление всегда сопровождается восстановлением и, наоборот, восстановление всегда связано с окислением.

Число электронов, отдаваемых восстановителем, равно числу электронов, присоединяемых окислителем

Если каждый атом окислителя может принять иное количество электронов, чем отдает атом восстановителя, то необходимо так подобрать количество атомов того и другого реагента, чтобы количество отдаваемых и принимаемых электронов стало одинаковым. Это требование положено в основу метода электронного баланса, с помощью которого уравнивают уравнения окислительно-восстановительных реакций.

Восстановители

Окислители

Металлы, водород, уголь

Оксид углерода(II) CO

Сероводород H2S, оксид серы(IV) SO2, сернистая кислота H2SOи ее соли

Иодоводородная кислота HI, бромоводородная кислота HBr, соляная кислота HCl

Хлорид олова(II) SnCl2, сульфат железа(II) FeSO4, сульфат марганца(II) MnSO4, сульфат хрома(III) Cr2(SO4)3

Азотистая кислота HNO2, аммиак NH3, гидразин N2H4, оксид азота(II) NO

Фосфористая кислота H3PO3

Альдегиды, спирты, муравьиная и щавелевая кислоты, глюкоза

Катод при электролизе

Галогены

Перманганат калия KMnO, манганат калия K2MnO, оксид марганца(IV) MnO2

Дихромат калия K2Cr2O, хромат калия K2CrO4

Азотная кислота HNO3

Кислород O2, озон О3,

пероксид водорода Н2О2

Серная кислота H2SO4(конц.), селеновая кислота H2SeO4

Оксид меди(II) CuO, оксид серебра(I) Ag2O, оксид свинца(IV) PbO2

Ионы благородных металлов (Ag+, Au 3+ и др.)

Хлорид железа(III) FeCl3

Гипохлориты, хлораты и перхлораты

Царская водка, смесь концентрированной азотной и плавиковой кислот

Анод при электролизе


Совокупность химических реакций, которые протекают на электродах в растворах или расплавах при пропускании через них электрического тока, называется электролизом.

В расплавах или растворах происходит диссоциация электролита. Катионы смещаются к катоду, анионы к аноду.

Электролиз расплавов. 

На катоде происходит восстановление катионов, на аноде окисление анионов.

При электролизе как на аноде, так и на катоде могут происходить конкурирующие процессы.

При проведении электролиза с использованием инертного (нерасходуемого) анода (например, графита), как правило, конкурирующими являются два окислительных и два восстановительных процесса:

на аноде — окисление анионов и гидроксид-ионов

на катоде — восстановление катионов и ионов водорода

При проведении электролиза с использованием активного (расходуемого) анода процесс усложняется и конкурирующими реакциями на электродах являются следующие:

на аноде — окисление анионов и гидроксид-ионов;

анодное растворение металла — материала анода

на катоде — восстановление катиона соли и ионов водорода;

восстановление катионов металла, полученных при растворении анода

При выборе наиболее вероятного процесса на аноде и катоде следует исходить из положения, что будет протекать та реакция, для которой требуется наименьшая затрата энергии. Кроме того, для выбора наиболее вероятного процесса на аноде и катоде при электролизе растворов солей с нерасходуемым электродом используют следующие правила.

1. На аноде могут образовываться следующие продукты:

а) при окислении анионов http://ok-t.ru/helpiksorg/baza3/68217485070.files/image162.jpg выделяется кислород;

б) при окислении анионов http://ok-t.ru/helpiksorg/baza3/68217485070.files/image164.jpg выделяются соответственно хлор, бром, иод;

в) при окислении анконов органических кислот происходит процесс: http://ok-t.ru/helpiksorg/baza3/68217485070.files/image166.jpg

2. Если конкурирующими процессами на катоде является восстановление катионов (металл стоит в электрохимическом ряду напряжений металлов левее водорода) и ионов водорода, то при этом выделяется водород.

В тех случаях, когда в процессе электролиза используется активный (расходуемый) анод, то последний будет окисляться в ходе электролиза и переходить в раствор в виде катионов. Энергия электрического тока при этом расходуется ка перенос металла с анода на катод. Данный процесс широко используется при рафинировании (очистка) металлов. Так, на этом принципе основано, в частности, получение чистой меди из загрязненной. В раствор медного купороса погружают пластины из очищенной и неочищенной меди. Пластины соединяют с источником постоянного тока таким образом, чтобы первая из них (очищенная медь) была отрицательным электродом (катод), а вторая — положительным (анод). В результате пластина из неочищенной меди растворяется и ионы меди из раствора осаждаются на катоде. При этом примесь остается в растворе или оседает на дно ванны. Этот же принцип используется для защиты металлов от коррозии путем нанесения на защищаемое изделие тонких слоев хрома или никеля.

Электролиз расплава хлорида натрия.

Для получения высокоактивных металлов (натрия, алюминия, магния, кальция и др.), легко вступающих во взаимодействие с водой, применяют электролиз расплава солей.

На катоде восстанавливаются катионы Na+ и выделяется металлический натрий, на аноде окисляются хлорид-ионы и выделяется хлор:

http://ok-t.ru/helpiksorg/baza3/68217485070.files/image168.jpg

http://ok-t.ru/helpiksorg/baza3/68217485070.files/image170.jpg

Зависимость количества вещества, образовавшегося под действием электрического тока, от времени, силы тока и природы электролита может быть установлена на основании обобщенного закона Фа-радея:

http://ok-t.ru/helpiksorg/baza3/68217485070.files/image172.jpg

где m — масса образовавшегося при электролизе i-вещества (г); Э — эквивалентная масса i-вещества (г/моль); М — молярная масса i-вещества (г/моль); n — заряд i-иона; I — сила тока (A); t — продолжительность процесса; F — константа Фарадея, характеризующая количество электричества, необходимое для выделения 1 эквивалентной массы вещества (F = 96 500 К = 26,8 А•ч).

Электролиз водных растворов.

В процессах на катоде и аноде могут участвовать не только ионы электролита, но и молекулы воды.

Будут ли на катоде восстанавливаться катионы металла или молекулы воды, зависит от положения металла в ряду напряжений металлов.

Если металл находится в ряду напряжений правее водорода, на катоде восстанавливаются катионы металла; если металл находится в ряду напряжений левее водорода, на катоде восстанавливаются молекулы воды и выделяется водород. Наконец, в случае катионов металлов от цинка до свинца может происходить либо выделение металла, либо выделение водорода, в зависимости от концентрации раствора и других условий.

На аноде также может происходить либо окисление анионов электролита, либо окисление молекул воды. При электролизе солей бескислородных кислот или самих кислот на аноде окисляются анионы (кроме F.) В случае кислородсодержащих кислот на аноде окисляются молекулы воды и выделяется кислород.

Электролиз раствора хлорида натрия:

На катоде восстанавливаются молекулы воды и выделяется водород, а на аноде окисляются хлорид-ионы и выделяется хлор
NaCl http://him.1september.ru/2007/14/strlki.gif Na+ + Cl,

H2http://him.1september.ru/2007/14/strlki.gif Н+ + ОН;

катод (–) (Na+; Н+): Hе = H0, 2H0 = H2

(2H2O + 2е = H2 + 2OH),

анод (+) (Cl; OН): Cl– – е = Cl0, 2Cl0 = Cl2;

2NaCl + 2H2O = 2NaOH + Cl2http://him.1september.ru/2007/14/sverh.gif + H2http://him.1september.ru/2007/14/sverh.gif.

Электролиз раствора нитрата меди(II):

Cu(NO3)2 http://him.1september.ru/2007/14/strlki.gif Cu2+ +

Н2http://him.1september.ru/2007/14/strlki.gif H+ + OH;

катод (–) (Cu2+; Н+): Cu2+ + 2е = Cu0,

анод (+) ( OН): OH– – е = OH0,

4H0 = O+ 2H2O;

2Cu(NO3)2 + 2H2O = 2Cuhttp://him.1september.ru/2007/14/svniz.gif + O2http://him.1september.ru/2007/14/sverh.gif + 4HNO3.

Эти три примера показывают, почему электролиз проводить выгоднее, чем осуществлять другие способы получения металлов: получаются металлы, гидроксиды, кислоты, газы.

Мы писали схемы электролиза, а теперь попробуем написать сразу уравнения электролиза, не обращаясь к схемам, а только используя шкалу активности ионов:

http://him.1september.ru/2007/14/33-1.jpg

Примеры уравнений электролиза:

2HgSO4 + 2H2O = 2Hghttp://him.1september.ru/2007/14/svniz.gif + O2http://him.1september.ru/2007/14/sverh.gif + 2H2SO4;

Na2SO4 + 2H2O = Na2SO4 + 2H2http://him.1september.ru/2007/14/sverh.gif + O2http://him.1september.ru/2007/14/sverh.gif;

2LiCl + 2H2O = 2LiOH + H2http://him.1september.ru/2007/14/sverh.gif + Cl2http://him.1september.ru/2007/14/sverh.gif.

Применение электролиза в народном хозяйстве

1. Для защиты металлических изделий от коррозии на их поверхность наносят тончайший слой другого металла: хрома, серебра, золота, никеля и т.д. Иногда, чтобы не расходовать дорогие металлы, производят многослойное покрытие. Например, внешние детали автомобиля сначала покрывают тонким слоем меди, на медь наносят тонкий слой никеля, а на него – слой хрома.

При нанесении покрытий на металл электролизом они получаются ровными по толщине, прочными. Таким способом можно покрывать изделия любой формы. Эту отрасль прикладной электрохимии называют гальваностегией.

2. Кроме защиты от коррозии гальванические покрытия придают красивый декоративный вид изделиям.

3.Другая отрасль электрохимии, близкая по принципу к гальваностегии, названа гальванопластикой. Это процесс получения точных копий различных предметов. Для этого предмет покрывают воском и получают матрицу. Все углубления копируемого предмета на матрице будут выпуклостями. Поверхность восковой матрицы покрывают тонким слоем графита, делая ее проводящей электрический ток.

Полученный графитовый электрод опускают в ванну с раствором сульфата меди. Анодом служит медь. При электролизе медный анод растворяется, а на графитовом катоде осаждается медь. Таким образом получается точная медная копия.

С помощью гальванопластики изготавливают клише для печати, грампластинки, металлизируют различные предметы. Гальванопластика открыта русским ученым Б.С.Якоби (1838).

Изготовление штампов для грампластинок включает нанесение тончайшего серебряного покрытия на пластмассовую пластинку, чтобы она стала электропроводной. Затем на пластинку наносят электролитическое никелевое покрытие.

Чем следует сделать пластинку в электролитической ванне – анодом или катодом? (О т в е т. Катодом.)

4. Электролиз используют для получения многих металлов: щелочных, щелочноземельных, алюминия, лантаноидов и др.

5. Для очистки некоторых металлов от примесей металл с примесями подключают к аноду. Металл растворяется в процессе электролиза и выделяется на металлическом катоде, а примесь остается в растворе.

6. Электролиз находит широкое применение для получения сложных веществ (щелочей, кислородсодержащих кислот), галогенов.

Алюминотермия — способ получения металлов, неметаллов (а также сплавов) восстановлением их оксидов металлическим алюминием:

2Al + Cr2О3 = Al2О3 + 2Cr

При этой реакции выделяется большое количество теплоты, смесь нагревается до 1900—2400 °C.

Контроль знаний:

  1. Что такое гидролиз солей? Дайте определение.

  2. Какие соли подвергаются гидролизу? Приведите примеры.

  3. Какие факторы влияют на гидролиз солей и почему?

  4. Составьте молекулярные и ионные уравнения гидролиза следующих солей NiCl2, NaNO2.

  5. Дайте определение электролиза, степени окисления.


Литература:
1.Габриелян О.С. Химия. 11 класс. Базовый уровень: учеб. для общеобразоват. учреждений. – М., 2010,

2. Габриелян О.С. Химия: учеб. для студ. сред. проф. учеб. заведений.- 2-е издание / О.С. Габриелян, И.Г. Остроумов. – М., 2013.

3.  http://ru.wikipedia.org- энциклопедия

4. .Рудзитис Г.Е., Фельдман Ф.Г, химия. 10 класс: учебник для общеобразовательных учреждений (базовый уровень). – М.: Просвещение, 2016.


owl%20book[1]Самостоятельная работа №5

1   2   3   4   5   6   7   8   9   ...   13

Похожие:

Газообразное состояние вещества icon Инструкция по эксплуатации модели
С° чернила сублимируют (переходят в газообразное состояние) и проникают в поверхностный слой синтетических материалов, образуя прочные...
Газообразное состояние вещества icon Ф. А. Брокгауз И. А. Ефрон Энциклопедический словарь (П-2)
При переходе тел из твердого состояния в жидкое и потом в газообразное или при обратных переходах тел, без изменения их химического...
Газообразное состояние вещества icon Нанообъекты занимают промежуточное состояние между атомно-молекулярным...
Следует подчеркнуть, что нанообъекты занимают промежуточное состояние между атомно-молекулярным и конденсированным непрерывным (континуальным)...
Газообразное состояние вещества icon Гентамицин I. Общие сведения
Гентамицина сульфат 4% раствор – лекарственное средство, содержащее в качестве действующего вещества гентамицина сульфат. В 1 мл...
Газообразное состояние вещества icon А могут быть превышены при написании дозы этого вещества прописью с восклицательным знаком
Лекарственная форма придаёт лекарственному средству или лекарственному растительному сырью удобное для применения состояние, при...
Газообразное состояние вещества icon Руководство по общей рецептуре для студентов медицинских училищ и колледжей
Фармакология знакомит нас с химическими веществами, их биологическими свойствами и фармакотерапевтическим действием, при помощи которого...
Газообразное состояние вещества icon Руководство по общей рецептуре для студентов медицинских училищ и колледжей
Фармакология знакомит нас с химическими веществами, их биологическими свойствами и фармакотерапевтическим действием, при помощи которого...
Газообразное состояние вещества icon Инструкция о порядке уничтожения использованных ампул из-под наркотических...
Заявка на наркотические средства и психотропные вещества, сильнодействующие вещества списка пккн для многопрофильного стационара...
Газообразное состояние вещества icon Программа предметного курса для учащихся 11 класса Пояснительная записка
При рассмотрении теоретического материала, выполнении лабораторных и практических работ используются вещества, имеющие практическое...
Газообразное состояние вещества icon идентификация вещества / препарата и компании / предприятия
Соответствующие установленные области применения вещества или смеси и нерекомендуемые области применения
Газообразное состояние вещества icon идентификация вещества / препарата и компании / предприятия
Соответствующие установленные области применения вещества или смеси и нерекомендуемые области применения
Газообразное состояние вещества icon Правила освидетельствования лица, которое управляет транспортным...
Освидетельствованию на состояние алкогольного опьянения, медицинскому освидетельствованию на состояние опьянения подлежит водитель...
Газообразное состояние вещества icon Правительство российской федерации постановление
Льствование на состояние опьянения, медицинского освидетельствования этих лиц на состояние опьянения и оформления его результатов...
Газообразное состояние вещества icon Ооо ветпродукт инструкция
Тилозин 50 и Тилозин 200 – антибактериальные лекарственные средства в форме растворов для инъекций, содержащие в качестве действующего...
Газообразное состояние вещества icon Система стандартов безопасности труда пожаровзрывоопасность веществ и материалов
Настоящий стандарт распространяется на простые вещества, химические соединения и их смеси в различных агрегатных состояниях и комбинациях,...
Газообразное состояние вещества icon Инструкция №1/10 по применению дезинфицирующего средства «жавель син (javel chin)»
В качестве действующего вещества в состав средства входит натрий дихлоризоцианурат дигидрат–80,5%, а также вспомогательные вещества...

Руководство, инструкция по применению




При копировании материала укажите ссылку © 2024
контакты
rykovodstvo.ru
Поиск