Скачать 0.92 Mb.
|
3. Классификация аналитических систем Для обозначения аналитических технологий и средств в целом принято использовать термин "Business Intelligence" или, сокращенно, - BI. Понятие BI объединяет различные средства и технологии анализа и обработки данных масштаба предприятия. На их основе создаются BI-системы. Их цель – повысить качество информации для принятия управленческих решений. BI-системы ранее были известны под названием Систем Поддержки Принятия Решений (СППР, DSS- Decision Support System). В качестве синонимов понятия "СППР" оперируют также понятиями "аналитическая система" или "управленческая система". Сейчас же класс систем BI является независимым классом систем, в который входят системы класса СППР. По оценкам IDC рынок BI состоит из 5 сегментов: 1. OLAP-продукты; 2. инструменты добычи данных; 3. средства построения Хранилищ и Витрин данных; 4. управленческие информационные системы и приложения; 5. инструменты конечного пользователя для выполнения запросов и построения отчетов; 6. системы СППР. Системы СППР В рамках данного материала системы СППР подробно не рассматриваются, так как это является отдельной специфической областью интеллектуальных информационных систем. Рассмотрим более подробно каждый сегмент. OLAP-продукты На сегодняшний день в мире разработано множество продуктов, реализующих OLAP-технологии. Чтобы легче было ориентироваться среди них, существует несколько классификаций OLAP-продуктов: • по способу хранения данных; • по месту нахождения OLAP-машины; • по степени готовности к применению. Рассмотрим классификацию систем по способу хранения данных. Основная идея OLAP заключается в построении многомерных таблиц, которые будут доступны для запросов пользователей. Многомерные таблицы (многомерные кубы) строятся на основе исходных и агрегатных данных. И исходные и агрегатные данные для многомерных таблиц могут храниться как в реляционных, так и многомерных базах данных. Поэтому в настоящее время применяются три способа хранения данных: MOLAP (Multidimensional OLAP), ROLAP (Relational OLAP) и HOLAP (Hybrid OLAP). Соответственно, OLAP-продукты по способу хранения данных делятся на три аналогичные категории: • В случае MOLAP, исходные и агрегатные данные хранятся в многомерной БД или в многомерном локальном кубе. Такой способ хранения обеспечивает высокую скорость выполнения OLAP-операций. Но многомерная база в этом случае чаще всего будет избыточной. Куб, построенный на ее основе, будет сильно зависеть от числа измерений. При увеличении количества измерений объем куба будет экспоненциально расти. Иногда это может привести к "взрывному росту" объема данных, парализующему в результате запросы пользователей. • В ROLAP-продуктах исходные данные хранятся в реляционных БД или в плоских локальных таблицах на файл-сервере. Агрегатные данные могут помещаться в служебные таблицы в той же БД. Преобразование данных из реляционной БД в многомерные кубы происходит по запросу OLAP-средства. При этом скорость построения куба будет сильно зависеть от типа источника данных и порой приводит к неприемлемому времени отклика системы. • В случае использования Гибридной архитектуры исходные данные остаются в реляционной базе, а агрегаты размещаются в многомерной. Построение OLAP-куба выполняется по запросу OLAP-средства на основе реляционных и многомерных данных. Такой подход позволяет избежать взрывного роста данных. При этом можно достичь оптимального времени исполнения клиентских запросов. Следующая классификация - по месту размещения OLAP-машины. По этому признаку OLAP-продукты делятся на OLAP-серверы и OLAP-клиенты. • В серверных OLAP-средствах вычисления и хранение агрегатных данных выполняются сервером. Клиентское приложение получает только результаты запросов к многомерным кубам, которые хранятся на сервере. Некоторые OLAP-серверы поддерживают хранение данных только в реляционных базах, другие - только в многомерных. Многие современные OLAP-серверы поддерживают все три способа хранения данных: MOLAP, ROLAP и HOLAP. Одним из самых распространенным в настоящее время серверным решением является OLAP-сервер корпорации Microsoft. • OLAP-клиент устроен по-другому. Построение многомерного куба и OLAP-вычисления выполняются в памяти клиентского компьютера. OLAP-клиенты также делятся на ROLAP и MOLAP. А некоторые могут поддерживать оба варианта доступа к данным. Среди одних из первых клиентских OLAP-средств можно назвать Oracle Discoverer. Те же возможности обеспечивает и отечественная разработка – продукты Аналитической платформы Контур от компании Intersoft Lab. У каждого из этих подходов есть свои "плюсы" и "минусы". Нельзя однозначно говорить о преимуществах серверных средств перед клиентскими и наоборот. На практике такой выбор является результатом компромисса "эксплуатационных показателей", стоимости программного обеспечения и затрат на разработку, внедрение и сопровождение аналитической системы. Следующая классификация OLAP-продуктов - по степени готовности к применению. Различают: OLAP-компоненты, инструментальные OLAP – системы и конечные OLAP-приложения. • OLAP-компонента – это инструмент разработчика. С ее помощью разрабатываются клиентские OLAP-программы. Различают MOLAP и ROLAP-компоненты: MOLAP-компоненты являются инструментами генерации запросов к OLAP-серверу. Они также обеспечивают визуализацию полученных данных. ROLAP-компоненты содержат собственную OLAP-машину. OLAP-машина обеспечивает построение OLAP-кубов в оперативной памяти и отображает их на экране. Одна из наиболее доступных, но в то же время и одна из самых слабых OLAP-компонент – Decision Cube в составе Borland Delphi. • Инструментальные OLAP-системы – это программные продукты, предназначенные для создания аналитических приложений. Различают две категории инструментальных OLAP-систем: системы для программирования и системы для быстрой настройки. Системы для программирования – это среда разработчика аналитических систем. В ней, путем программирования запросов к данным, алгоритмов расчета и OLAP-интерфейсов можно создать OLAP-приложение для конечного пользователя. Представителем этого класса программного обеспечения является аналитическая платформа Knosys Pro Clarity. С другой стороны, OLAP-системы для быстрой настройки – это средства, которые предоставляют визуальный интерфейс для создания OLAP-приложений без программирования. Такие системы включают визуальный генератор запросов, встроенные алгоритмы агрегации и инструменты настройки пользовательских OLAP-интерфейсов. В такой технологии реализована большая часть инструментов пакета BusinessObjects и Аналитической платформы Контур. • Наконец, к третьей категории OLAP-продуктов по степени готовности к применению относятся конечные OLAP-приложения. Это готовые прикладные решения для конечного пользователя. Они требуют только установки, и, не всегда, настройки под специфику пользователя. Пример такого решения – OLAP-приложения системы "Контур Стандарт", подготовленные для анализа данных в различных отраслях и для решения различных аналитических задач. Инструменты добычи данных Knowledge Discovery in Databases (KDD)– это процесс поиска полезных знаний в "сырых" данных. KDD включает в себя вопросы подготовки данных, выбора информативных признаков, очистки данных, применения методов "раскапывания данных" (Data Mining), а также обработки и интерпретации полученных результатов. Центральным элементом этой технологии являются методы Data Mining, позволяющие обнаруживать знания при помощи математических правил: • Фильтрация. Необходимость в фильтрации возникает, когда нужно отделить полезную информацию от искажающего его шума за счет сглаживания, очистки, редактирования аномальных значений, устранения незначащих факторов, понижения размерности информации и т.д. Применение фильтрации в системах анализа данных относится к первичной обработке данных и позволяет повысить качество исходных данных, а, следовательно, и точность результата анализа. • Деревья решений. Они позволяют представлять правила в иерархической, последовательной структуре, где каждому объекту соответствует единственный узел, дающий решение. Под правилом понимается логическая конструкция, представленная в виде «если..., то...». Деревья решений применяются при решении задач поиска оптимальных решений на основе описанной модели поведения. • Ассоциативные правила. Они позволяют находить закономерности между связанными событиями. Примером такого правила служит утверждение, что в том случае, если произошло событие А, то произойдет и событие В с вероятностью C. Впервые это задача была предложена для нахождения типичных шаблонов покупок, совершаемых в супермаркетах, поэтому иногда ее еще называют анализом рыночной корзины (market basket analysis). • Генетические алгоритмы. Они применяются при решении задач оптимизации. Эти методы были открыты при изучении эволюции и происхождения видов. Генетические алгоритмы нужны для настройки нейронных сетей, а также решения различных задач, когда можно составить описание возможных вариантов решения в виде вектора параметров, и известен критерий, определяющий эффективность каждого варианта. Генетические алгоритмы применяются для составления расписаний, портфелей ценных бумаг, заполнения контейнеров при перевозке (пересылке) грузов, выбор маршрутов движения, конфигурации оборудования и т.д. • Нейронные сети. Они реализуют алгоритмы на основе сетей обратного распространения ошибки, самоорганизующихся карт Кохонена, RBF-сетей, сетей Хэмминга и других подобных алгоритмов анализа данных. Нейронные сети применяются для решения самых различных задач - восстановление пропусков в данных, поиск закономерностей, классификация и кластеризация данных, прогнозирование и моделирование. Инструменты добычи данных поставляются заказчикам двумя способами: • в составе OLAP-систем • в виде самостоятельных систем Data Mining. Функциональность Data Mining в той или иной степени полноты реализации включена в аналитические системы различных производителей – Oracle, Hyperion, SAS и т.д. Однако, наиболее «продвинутыми» в этом плане являются специализированные системы математического анализа данных. В России авторитетным разработчиком систем в технологии KDD является компания "Лаборатория BaseGroup". Средства построения Хранилищ и Витрин данных Хранилища и Витрины данных создаются с применением специализированных средств построения Хранилищ\витрин данных. К этим средствам относятся: • средства проектирования Хранилищ данных; • средства извлечения, преобразования и загрузки данных; • готовые предметно-ориентированные ХД. Средства проектирования Хранилищ данных входят в состав реляционных и многомерных СУБД от таких производителей как Microsoft, Oracle, IBM, Sybase и других. Также часто применяются универсальные CASE-инструменты, такие как BPWin и ErWin. После описания структур хранения данных специальными системными утилитами выполняется их генерация. Такой подход к созданию Хранилища данных позволяет построить индивидуальное Хранилище или Витрину данных в сжатые сроки. В тоже время такой подход затрудняет перенос наработок от одного заказчика к другому и обмен практическим опытом в решении аналитических задач. Альтернативным способом построения Хранилищ данных является применение других специализированных средств – Студий для построения Хранилищ данных. Такие продукты предлагают набор шаблонов и заготовок для быстрого создания Хранилища. В составе Студии может предоставляться базовая модель Хранилища данных, ориентированная на определенную бизнес-сферу. С помощью таких инструментов можно значительно быстрее создать Хранилище данных, воспользовавшись опытом предыдущих решений и начать его эксплуатацию. Продукты этого класса, в частности, предлагает компания Sybase – это продукт Industry Warehouse Studio. ETL-средства (extraction, transformation, loading) – средства извлечения, преобразования и загрузки данных) обеспечивают три основных процесса, используемые при переносе данных из одного приложения или системы в другие. ETL-средства извлекают информацию из исходной базы данных, преобразуют ее в формат, поддерживаемый базой данных назначения, а затем загружают в нее преобразованную информацию. Эти средства обычно входят в состав функциональности реляционных и многомерных СУБД или Студий для построения Хранилищ данных. Однако существуют и специализированные системы, реализующие только ETL-функции____о. Классической ETL-системой является, например, продукт Ascential DataStage компании Ascential Software. И, наконец, существует еще один способ построения Хранилищ и Витрин данных – это применение готовых предметно-ориентированных Хранилищ данных. Это самый надежный способ построить Хранилище данных в сжатые сроки. Готовые к эксплуатации Хранилища данных характеризуются наличием в них механизмов средств построения Хранилищ/Витрин данных, взаимосвязанных посредством единого словаря метаданных. К ним относятся - процедуры извлечения, преобразования, очистки и загрузки данных, функции генерации баз данных и процедур обработки, механизмы построения выборок данных, интерфейсы просмотра и анализа данных. Ограничением в применении готовых Хранилищ данных является их предметная ориентация. Например, финансовое Хранилище данных невозможно применить для решения задач оптимизации химического производства. Примером готового предметно-ориентированного Хранилища данных является система Контур Корпорация от компании Intersoft Lab. Применение предметно-ориентированных Хранилищ данных отражает общемировую тенденцию развития рынка BI, наметившуюся в последнее время – предоставления платформ для "быстрой" разработки аналитических приложений. Управленческие информационные системы и приложения Существует еще один очень разносторонний класс аналитических систем. Это – конечные решения для управленцев и аналитиков. Исторически сложилось так, что технологическая основа реализации таких систем существенно различается. Одни из них построены на современных аналитических инструментах, другие – с применением базовых информационных технологий. Чтобы легче ориентироваться в этих системах вводится 3 классификации: • по виду решаемой задачи; • по масштабу решаемой задачи; • по технологическому построению. Аналитические системы классифицируются по виду задач, решаемых с их помощью. Среди видов задач можно выделить: • Анализ финансового состояния банка или предприятия, выполняемый по внешним публичным данным, таким как баланс, отчет о финансовых результатах, иногда - приложение к балансу и отчет о движении денежных средств. Системы - Audit Expert (Про-Инвест), Альт-финансы (Альт), АБФИ (Вестона), Аналитик, АФСП, АДП (ИНЭК) и другие. • Инвестиционный анализ – для комплексной оценки эффективности инвестиционных проектов и принятия решения об их финансировании, Project Expert (Про-Инвест), Альт-Инвест (Альт) и другие. • Подготовка бизнес-планов, учитывающих вариации схем производства, сбыта и финансирования, комплексного анализа маркетинговой ситуации, чувствительности проекта по основным параметрам. Системы - Project Expert (Про-Инвест), Альт-Инвест (Альт) и другие. • Маркетинговый анализ, позволяющий оценить положение компании на рынке, провести сравнительный анализ ее сбытовой деятельности с конкурентами, сформировать оптимальную структуру сбыта, определить доходность различных сегментов рынка и товаров, долю рынка компании, темпы роста и другое. Системы – Marketing Expert (Про-Инвест), Касатка и другие. • Управление проектами, применяемое для разработки расписания исполнения проекта, определения критического пути ирезервов времени исполнения операций проекта; потребности проекта в финансировании, материалах и оборудовании, анализ рисков и планирование расписания с учетом рисков и так далее. Системы – MS Project (Microsoft), Open Plan (Welcom Software Technology) и другие. • Бюджетирование, обеспечивающее планирование, учет и анализ по центрам финансовой ответственности, бизнесам, продуктам в разрезе активов и пассивов, доходов и расходов, выполнение аллокаций и расчет финансового результата. Системы - Hyperion Pillar, Comshare MPC, Контур Корпорация. Бюджет (Intersoft Lab) и другие. • Финансовое управление, включающее помимо задач бюджетирования задачи финансового планирования, управленческого учета, трансфертного управления ресурсами, оценки бизнесов по методу ABC, анализа активов, пассивов, рисков. Системы - Oracle Financial Services Applications (Oracle), Контур Корпорация. Финансовое управление (Intersoft Lab) и другие. На практике встречается гораздо больше видов задач, но здесь был перечислен ряд только тех задач, которые нашли свое воплощение в тиражных аналитических системах. Некоторые из этих систем могут решать только одну задачу, другие являются комплексом, включающим в себя широкий перечень взаимосвязанных задач. Аналитические системы также классифицируются по масштабу решаемой задачи: • Системы автоматизации труда одного специалиста. Это так называемые DeskTop-системы, предназначенные для автоматизации труда узкого специалиста. Как правило, для эксплуатации таких систем не требуется помощь службы автоматизации. • Системы для коллективной работы группы сотрудников. Такие системы содержат средства, обеспечивающие коллективную работу пользователей в режиме реального времени с единой базой данных в рамках прав доступа. Такие системы уже требуют выполнения функций администрирования и сопровождения. • Системы для применения в территориально распределенной корпорации. Эти системы включают в себя свойства аналитических систем для групп пользователей, а также средства взаимодействия с удаленными подразделениями корпорации (филиалами) в виде технологий сбора данных, дистрибуции НСИ и отчетов. Системы данного класса сложны в эксплуатации, но при этом обеспечивают наиболее полное решение аналитических и управленческих задач. По технологическому построению аналитические системы можно условно разделить на монолитные и настраиваемые: • Монолитные аналитические системы характеризуются тем, что аналитическая методика в них реализуется в коде самой программы, а не в виде настройки универсального аналитического инструмента. В этом случае аналитическая система не требует, как правило, выполнения существенных работ по своей настройке (за исключением систем класса Data Mining). Она может использоваться практически сразу после установки. В то же время такие системы не "гибкие" и плохо поддаются изменениям в соответствии с требованиями пользователя. Монолитные системы разрабатываются с применением базовых средств программирования и СУБД. • Настраиваемые аналитические системы характеризуются тем, что при их создании применяются универсальные аналитические инструменты и специализированные средства, такие как OLAP, Студии, ETL, Data Mining. Их применение позволяет повысить качество аналитической системы, дает перспективы развития, но в то же время приводит к удорожанию конечного решения. Прикладные аналитические системы, выполненные в виде настроек универсальных аналитических инструментов, требуют большего объема работ при внедрении, однако позволяют реализовывать уникальные аналитические методики, принятые в организации. Компромиссом между этими двумя классами систем является реализация аналитической методики в виде Приложения универсальной аналитической системы. Такой подход позволяет выполнять их тиражирование независимо друг от друга. Но подобных систем в настоящее время на рынке представлено крайне мало. |
Федеральное государственное образовательное учреждение высшего профессионального образования Разработка и внедрение комплекса специализированных образовательных программ инженерного профиля в рамках повышения квалификации... |
Конкурсная документация открытого конкурса на выполнение работ (оказание... Директор Департамента управления программами и конкурсных процедур Министерства образования и науки Российской Федерации |
||
Курс повышения квалификации «Специальные компетенции в индустрии... Курс повышения квалификации «Применение технологии e-learning при реализации образовательных программ в области инновационного предпринимательства»... |
Аннотации модулей образовательных программ Повышения квалификации... Повышения квалификации сотрудников образовательных учреждений по вопросам энергосбережения и энергетической эффективности |
||
Красноярские адвокаты приняли участие в семинаре «разработка программ... |
Программа повышения квалификации по направлению «Информационные технологии в апк» «Новгородский институт переподготовки и повышения квалификации руководящих кадров и специалистов агропромышленного комплекса» |
||
Заявка Урфу на 2010-2020 годы, в соответствии с протоколом №19 от «29» сентября 2011 г экспертной комиссии по Мероприятию 1 «Формирование... |
Методические материалы для слушателей курсов повышения квалификации... Результаты рейтингов не только позволяют оценить качество высшего образования, но и влияют на него в глобальном масштабе |
||
1. Наименование квалификации и уровень квалификации Пример оценочного средства разработан в рамках Комплекса мероприятий по развитию механизма независимой оценки квалификаций, по созданию... |
1. Наименование квалификации и уровень квалификации Пример оценочного средства разработан в рамках Комплекса мероприятий по развитию механизма независимой оценки квалификаций, по созданию... |
||
Разработка и внедрение методов повышения качества ортопедического... |
Отчет о проделанной работе за 2009 – 2010 учебный год педагога дополнительного... Повышение квалификации: Посещение занятий курсов повышения квалификации при Московском педагогическом университете |
||
Программы повышения квалификации Тематизирует письма, приходящие в тгу от различных образовательных организаций. Мы также проводим оценку существующих программ, учебных... |
Отчет по итогам самообследования государственного бюджетного образовательного учреждения Соответствие профессиональных образовательных программ требованиям федеральных государственных образовательных стандартов. 16 |
||
Отчёт о результатах самообследования гбоу спо ро «Красносулинский металлургический колледж» Соответствие профессиональных образовательных программ требованиям федеральных государственных образовательных стандартов |
Программа разработана на основании: Приказа №1221 от 18. 06. 97г.... Программа предназначены для повышения квалификации руководителей и специалистов, ответственных за организацию эксплуатации, технического... |
Поиск |