Допустимое число опасных ударов молнии на 100 км трассы в год для оптических кабелей связи
Назначение кабеля
|
В горных районах и районах со скальным грунтом при удельном сопротивлении свыше 500 Ом-м и в районах многолетней мерзлоты
|
В остальных районах
|
Кабели магистральной сети связи
|
0,1
|
0,2
|
Кабели внутризоновой сети связи
|
0,3
|
0,5
|
3.3.5.2. Рекомендуемые категории молниестойкости оптических кабельных линий
При проектировании оптических кабельных линий передачи необходимо предусматривать использование кабелей, имеющих категорию по молниестойкости не ниже приведенных в табл. 3.11, в зависимости от назначения кабелей и условий прокладки. В этом случае при прокладке кабелей на открытой местности защитные меры могут потребоваться крайне редко, только в районах с высоким удельным сопротивлением грунта и повышенной грозовой деятельностью.
Таблица 3.11
Рекомендуемые категории по молниестойкости оптических кабельных линий
Районы
|
Для магистральной сети связи
|
Для внутризоновых сетей связи
|
С удельным сопротивлением грунта до 1000 Ом×м
|
I, III
|
I-IV
|
С удельным сопротивлением грунта свыше 1000 Ом×м
|
I,II
|
I-III
|
С многолетнемерзлым грунтом
|
I
|
I, II
|
3.3.5.3. Защита существующих оптических кабельных линий
На существующих оптических кабельных линиях передачи защитные мероприятия осуществляются на тех участках, где произошли повреждения от ударов молнии, причем длина защищаемого участка определяется условиями местности (протяженностью возвышенности или участка с повышенным удельным сопротивлением грунта и т.п.), но должна быть не менее 100 м в каждую сторону от места повреждения. В этих случаях необходимо предусматривать прокладку защитных проводов.
Работы по оборудованию защитных мер осуществляются сразу после устранения грозового повреждения.
3.3.6. Защита от ударов молнии электрических и оптических кабелей связи, проложенных в населенном пункте
При прокладке кабелей в населенном пункте, кроме случая пересечения и сближения с ВЛ напряжением 110 кВ и выше, защита от ударов молнии не предусматривается.
3.3.7. Защита кабелей, проложенных вдоль опушки леса, вблизи отдельно стоящих деревьев, опор, мачт
Защита кабелей связи, проложенных вдоль опушки леса, а также вблизи объектов высотой более 6 м (отдельно стоящих деревьев, опор линии связи, линии электропередачи, мачты молниеотводов и т.п.), предусматривается, если расстояние между кабелем и объектом (или его подземной частью) менее расстояний, приведенных в табл. 3.12 для различных значений удельного сопротивления земли.
Таблица 3.12
Допустимые расстояния между кабелями и заземляющим контуром (опорой)
Удельное сопротивление грунта, Ом×м
|
Наименьшее допустимое расстояние, м
|
До 100
|
5
|
Более 100 до 1000
|
10
|
Более 1000
|
15
|
4. ЗАЩИТА ОТ ВТОРИЧНЫХ ВОЗДЕЙСТВИЙ МОЛНИИ
4.1. Общие положения
Ниже изложены основные принципы защиты от вторичных воздействий молнии электрических и электронных систем с учетом рекомендации МЭК (стандарты МЭК 61312). Эти системы используются во многих отраслях производства, применяющих достаточно сложное и дорогостоящее оборудование. Они более чувствительны к воздействию молнии, чем устройства предыдущих поколений, применяются специальные меры по защите их от опасных воздействий молнии.
4.2. Зоны защиты от воздействия молнии
Пространство, в котором расположены электрические и электронные системы, разделяется на зоны различной степени защиты. Зоны характеризуются существенным изменением электромагнитных параметров на границах. В общем случае, чем выше номер зоны, тем меньше значения параметров электромагнитных полей, токов и напряжений в пространстве зоны.
Зона 0 – зона, где каждый объект подвержен прямому удару молнии, и поэтому через него может протекать полный ток молнии. В этой области электромагнитное поле имеет максимальное значение.
Зона 0Е – зона, где объекты не подвержены прямому удару молнии, но электромагнитное поле не ослаблено и также имеет максимальное значение.
Зона 1 – зона, где объекты не подвержены прямому удару молнии и ток во всех проводящих элементах внутри зоны меньше, чем в зоне 0Е в этой зоне электромагнитное поле может быть ослаблено экранированием.
Прочие зоны – эти зоны устанавливаются, если требуется дальнейшее уменьшение тока (напряжения) и/или ослабление электромагнитного поля; требования к параметрам зон определяются в соответствии с требованиями к защите различных зон объекта.
Рис. 4.1. Зоны защиты от воздействия молнии
Общие принципы разделения защищаемого пространства на зоны молниезащиты показаны на рис. 4.1.
На границах зон осуществляются меры по экранированию и соединению всех пересекающих границу металлических элементов и коммуникаций.
Две пространственно разделенные зоны 1 с помощью экранированного соединения могут образовать общую зону (рис. 4.2).
Рис. 4.2. Объединение двух зон
4.3. Экранирование
Экранирование является основным способом уменьшения электромагнитных помех.
Металлическая конструкция строительного сооружения используется или может быть использована в качестве экрана. Подобная экранная структура образуется, например, стальной арматурой стен, полов здания, а также металлическими деталями крыши, фасадов, стальными каркасами, решетками. Эта экранирующая структура образует электромагнитный экран с отверстиями (за счет окон, дверей, вентиляционных отверстий, шага сетки в арматуре, щелей в металлическом фасаде, отверстий для линий электроснабжения и т.п.). Для уменьшения влияния электромагнитных полей все металлические элементы объекта электрически объединяются и соединяются с системой молниезащиты (рис. 4.3).
Если кабели проходят между соседними объектами, заземлители последних соединяются для увеличения числа параллельных проводников и уменьшения, благодаря этому, токов в кабелях. Такому требованию хорошо удовлетворяет система заземления в виде сетки. Для уменьшения индуцированных помех можно использовать:
внешнее экранирование;
рациональную прокладку кабельных линий;
экранирование линий питания и связи.
Все эти мероприятия могут быть выполнены одновременно.
Рис. 4.3. Пространственный экран из стальной арматуры
Если внутри защищаемого пространства имеются экранированные кабели, их экраны соединяются с системой молниезащиты на обоих концах и на границах зон.
Кабели, идущие от одного объекта к другому, по всей длине укладываются в металлические трубы, сетчатые короба или железобетонные короба с сетчатой арматурой. Металлические элементы труб, коробов и экраны кабелей соединяются с указанными общими шинами объектов. Можно не использовать металлические короба или лотки, если экраны кабелей способны выдержать предполагаемый ток молнии.
4.4. Соединения
Соединения металлических элементов необходимы для уменьшения разности потенциалов между ними внутри защищаемого объекта.
Соединения находящихся внутри защищаемого пространства и пересекающих границы зон молниезащиты металлических элементов и систем выполняются на границах зон. Осуществлять соединения следует с помощью специальных проводников или зажимов и, когда это необходимо, с помощью устройств защиты от перенапряжений.
4.4.1. Соединения на границах зон
Все входящие снаружи в объект проводники соединяются с системой молниезащиты.
Если внешние проводники, силовые кабели или кабели связи входят в объект в различных точках и поэтому имеется несколько общих шин, последние присоединяются по кратчайшему пути к замкнутому контуру заземления или арматуре конструкции, или к металлической внешней облицовке (при ее наличии). Если замкнутого контура заземления нет, указанные общие шины присоединяются к отдельным заземляющим электродам и соединяются внешним кольцевым проводником или разорванным кольцом. Если внешние проводники входят в объект над землей, общие шины присоединяются к горизонтальному кольцевому проводнику внутри или снаружи стен. Этот проводник, в свою очередь, соединяется с нижними проводниками и арматурой.
Проводники и кабели, входящие в объект на уровне земли, рекомендуется соединять с системой молниезащиты на этом же уровне. Общая шина в точке входа кабелей в здание располагается как можно ближе к заземлителю и арматуре конструкции, с которыми она соединена.
Кольцевой проводник соединяется с арматурой или другими экранирующими элементами, такими как металлическая облицовка, через каждые 5 м. Минимальное поперечное сечение медных или стальных оцинкованных проводников – 50 мм2.
Общие шины для объектов, имеющих информационные системы, где влияние токов молнии предполагается свести к минимуму, следует изготавливать из металлических пластин с большим числом присоединений к арматуре или другим экранирующим элементам.
Для контактных соединений и устройств защиты от перенапряжений, расположенных на границах зон 0 и 1, принимаются параметры токов, указанные в табл. 2.3. При наличии нескольких проводников учитывается распределение токов по проводникам.
Для проводников и кабелей, входящих в объект на уровне земли, оценивается проводимая ими часть тока молнии.
Сечения соединительных проводников определяются согласно табл. 4.1 и 4.2. Таблица 4.1 используется, если через проводящий элемент протекает более 25 % тока молнии, а таблица 4.2 – если менее 25 %.
Таблица 4.1
Сечения проводников, через которые протекает большая часть тока молнии
Уровень защиты
|
Материал
|
Сечение, мм2, не менее
|
I-IV
|
Медь
|
16
|
I-IV
|
Алюминий
|
25
|
I-IV
|
Железо
|
50
|
Таблица 4.2
Сечения проводников, через которые протекает незначительная часть тока молнии
Уровень защиты
|
Материал
|
Сечение, мм2, не менее
|
I-IV
|
Медь
|
6
|
I-IV
|
Алюминий
|
10
|
I-IV
|
Железо
|
16
|
Устройство защиты от перенапряжений выбирается выдерживающим часть тока молнии, ограничивающим перенапряжения и обрывающим сопровождающие токи после главных импульсов.
Максимальное перенапряжение Umax на входе в объект координируется с выдерживаемым напряжением системы.
Чтобы значение Umax сводилось к минимуму, линии присоединяются к общей шине проводниками минимальной длины.
Все проводящие элементы, такие как кабельные линии, пересекающие границы зон молниезащиты, соединяются на этих границах.
Соединение осуществляется на общей шине, к которой также присоединяются экранирующие и другие металлические элементы (например, корпуса оборудования).
Для контактных зажимов и устройств подавления перенапряжений параметры тока оцениваются в каждом отдельном случае. Максимальное перенапряжение на каждой границе координируется с выдерживаемым напряжением системы. Устройства защиты от перенапряжений на границах различных зон также координируются по энергетическим характеристикам.
4.4.2. Соединения внутри защищаемого объема
Все внутренние проводящие элементы значительных размеров, такие как направляющие лифтов, краны, металлические полы, рамы металлических дверей, трубы, кабельные лотки, присоединяются к ближайшей общей шине или другому общему соединительному элементу по кратчайшему пути. Желательны и дополнительные соединения проводящих элементов.
Поперечные сечения соединительных проводников указаны в табл. 4.2. Предполагается, что в соединительных проводниках проходит только незначительная часть тока молнии.
Все открытые проводящие части информационных систем соединяются в единую сеть. В особых случаях такая сеть может не иметь соединения с заземлителем.
Есть два способа присоединения к заземлителю металлических частей систем, высокочувствительных к электромагнитным помехам, – корпусов, оболочек или каркасов.
Первая основная конфигурация соединений выполняется в виде радиальной системы, вторая – в виде сетки.
При использовании радиальной системы все ее металлические части изолируются от заземлителя на всем протяжении, кроме единственной точки соединения с ним. Обычно такая система используется для относительно небольших объектов, где все элементы и кабели входят в объект в одной точке.
Радиальная система заземления присоединяется к общей системе заземления только в одной точке (рис. 4.4). В этом случае все линии и кабели между устройствами оборудования прокладываются параллельно образующим звезду проводникам заземления для уменьшения петли индуктивности. Благодаря заземлению в одной точке токи низкой частоты, появляющиеся при ударе молнии, не попадают в информационную систему. Кроме того, источники низкочастотных помех внутри информационной системы не создают токов в системе заземления. Ввод в защитную зону проводов производится исключительно в месте центральной точки системы уравнивания потенциалов; Указанная общая точка является также наилучшим местом присоединения устройств защиты от перенапряжений.
|