Условное обозначение


Скачать 279.59 Kb.
Название Условное обозначение
страница 2/3
Тип Лекция
rykovodstvo.ru > Руководство эксплуатация > Лекция
1   2   3

Изоэлектрическая точка аминокислот

Мы рассмотрели превращение в кислой и щелочной средах моноаминомонокарбоновых кислот, в радикалах которых не содержится ионогенных групп (аминокислоты с недиссоциирующими радикалами).

Изменение суммарного заряда аминокислот с анионными и катионными группами в радикале, в зависимости от рН среды, можно представить в следующей таблице. Для сравнения в эту же таблицу поместим аминокислоты, в радикале которых нет диссоциирующих групп.

В сильнокислом растворе имеется значительный избыток катионов, а в сильно щелочном  избыток анионов.

Если раствор аминокислоты поместить в электрическое поле, то в зависимости от активной реакции среды будет наблюдаться следующая картина: в кислой среде ион аминокислоты мигрирует к катоду, а в щелочной  к аноду. Если при определенном рН среды концентрация катионов станет равной концентрации анионов, то никакого движения аминокислоты происходить не будет.

Концентрация ионов водорода (pH), при которой аминокислота не перемещается в электрическом поле, называется изоэлектрической точкой данной аминокислоты (рI).

Изоэлектрическая точка аминокислоты зависит от кислотности группы  NH3+, основности карбоксилат-аниона, природы радикала и присутствия в молекуле кислоты любой дополнительной основной или кислотной группы.

При pH ≠ pI в растворе присутствует равновесная смесь диполярного иона и катионной или анионной формы, что в некоторых случаях может привести к появлению у растворов аминокислот буферных свойств (подробнее см. учебное пособие «Общая химия, часть III» под редакцией профессора А.С. Берлянда, глава «Буферные системы»). Значительной буферной ёмкостью в интервале физиологических значений рН, (т.е. в интервале 6-8) обладает только гистидин. Отметим лишь, что при pH = pI растворы аминокислот буферного действия не проявляют.

При пропускании постоянного тока через раствор, содержащий смесь нескольких аминокислот, каждая из них будет двигаться к катоду или к аноду со скоростью, зависящей от природы этой аминокислоты и от рН среды. Разделение и анализ смесей аминокислот, основанное на этом явлении, называется электрофорезом.

Химические свойства аминокислот

Амфотерность аминокислот

Наличие в молекуле аминокислоты функциональных групп кислотного и основного характера обусловливает амфотерность аминокислот. Подобно любому амфотерному соединению, аминокислоты образуют соли как при действии кислоты, так и при действии щелочи.



Аминокислоты, будучи гетерофункциональными соединениями, должны проявлять свойства как одной, так и другой функциональной группы.

Реакции карбоксильной группы

1. Образование внутрикомплексных солей.

С катионами тяжелых металлов α-аминокислоты образуют внутрикомплексные соли. Так, со свежеприготовленным гидроксидом меди (II) α-аминокислоты образуют хорошо кристаллизующиеся хелатные соли меди (II), окрашенные в синий цвет:



2. Образование сложных эфиров.

Так как реакция этерификации протекает в кислой среде, сложные эфиры аминокислот образуются в виде солей по аминогруппе:



Образовавшиеся эфиры не могут существовать в виде биполярных ионов, поэтому, в отличие от исходных аминокислот, они растворяются в органических растворителях и имеют более низкие температуры кипения. Это даёт возможность разделить смесь эфиров аминокислот перегонкой.

3. Образование хлорангидридов.

Эту реакцию часто называют реакцией «активации» карбоксильной группы. Хлорангидриды α-аминокислот получают действием на аминокислоты тионилхлорида (SOCl2) или хлорида фосфора (V) (PCl5). Полученные хлорангидриды неустойчивы и существуют только в виде солей:



Поэтому реакцию обычно проводят, предварительно защитив аминогруппу ацилированием.

4. Образование амидов аминокислот.

Такие амиды получают действием аммиака или первичных аминов на хлорангидриды с защищённой аминогруппой. В случае использования реакции с аминами получают замещённые по азоту амиды аминокислот:



5. Декарбоксилирование аминокислот.

В лабораторных условиях эта реакция протекает при нагревании аминокислоты с Ba(OH)2. В результате получается первичный амин:



Все реакции карбоксильной группы аминокислот можно представить следующей схемой:



Реакции аминогруппы

1. Реакция ацилирования. Образование N-замещённых амидов.

N-замещенные амиды часто рассматривают как N-ацильные производные. Эта реакция была отмечена ранее как реакция защиты аминогруппы. Её можно рассматривать как процесс ацилирования аминогруппы хлорангидридами или ангидридами кислот:



Реакция протекает лучше в щелочной среде. Примером может служить получение N-бензоилаланина в присутствии водного раствора гидроксида натрия. Этот метод получения N-ацильных производных называют ацилированием по Шоттен-Бауману:



Щёлочь необходима для связывания выделяющегося хлороводорода, т.к. в кислой среде N-ацильные производные легко гидролизуются, освобождая исходную аминокислоту:



Это общепринятый способ удаления защитной группы. Однако в некоторых случаях невозможно удалять защитную группу гидролизом в кислой среде. Например, при гидролизе пептидов будет разрушаться пептидная связь. В этих случаях защиту проводят такими реагентами, удаление которых можно провести не гидролизом, а каким-либо другим методом. Например, аминогруппу можно защищать реакцией с карбобензоксихлоридом (бензиловый эфир хлормуравьиной кислоты). Карбобензоксигруппа удаляется затем каталитическим гидрогенолизом:



2. Алкилирование аминокислот.

Аминокислоты можно алкилировать по аминогруппе галоидными алкилами (обычно иодистыми алкилами). Например, алкилированием глицина можно получить метиламиноуксусную кислоту  саркозин, которая в связанном виде содержится в некоторых белках.



При избытке иодистого метила образуется четвертичная аммонийная соль:



3. Действие азотистой кислоты (дезаминирование in vitro).

Реакция протекает так же, как и при взаимодействии с азотистой кислотой алифатических первичных аминов  выделяется азот, а аминогруппа замещается на гидроксильную группу:



Таким образом можно установить структурное родство аминокислот с соответствующими оксикислотами. По объёму выделившегося азота определяют количество α-аминокислоты, вступившей в реакцию (метод Ван-Слайка).

4. Взаимодействие с альдегидами.

α-Аминокислоты, подобно первичным аминам, реагируют с альдегидами, образуя замещенные имины (основания Шиффа). Реакция протекает через стадию образования карбиноламинов.



При взаимодействии α-аминокислот с формальдегидом образуются относительно устойчивые карбиноламины  N-метилольные производные, свободная карбоксильная группа которых может быть оттитрована щелочью.

Формальдегид, взятый в избытке, способствует отщеплению протона от NH3+ группы биполярного иона и легко соединяется со свободной (непротонированной) аминогруппой, образуя устойчивое метилольное производное.



Титрование аминокислоты в избытке формальдегида (формольное титрование) представляет собой аналитический метод (метод Серенсена), при помощи которого прослеживается, в частности, образование свободных аминокислот в процессе гидролиза белков.

5. Взаимодейстивие с динитрофторбензолом (ДНФБ).

Важной реакцией α-аминогруппы является её реакция с
2,4-динитрофторбензолом (ДНФБ) в слабощелочном растворе, которую впервые использовал Фредерик Сенгер для количественного введения метки в аминогруппы аминокислот и пептидов. Эта реакция протекает по механизму нуклеофильного замещения.



Продукт реакции окрашен в интенсивно желтый цвет. Эта реакция представляет исключительную ценность для идентификации N-концевых аминокислот полипептидных цепей.

Все вышеперечисленные реакции аминогруппы аминокислот можно представить следующей схемой:



Реакции функциональных групп, содержащихся в радикалах аминокислот

Аминокислоты вступают также в реакции, типичные для функциональных групп, присутствующих в их радикалах. Например, для SH-групп цистеина, гидроксильной группы тирозина и треонина, гуанидиновой группы аргинина.

1. Реакции сульфгидрильной (тиоловой) группы.

Для сульфгидрильной группы характерна исключительно высокая реакционная способность. Например, при действии на цистеин незначительных концентраций ионов некоторых тяжелых металлов образуются меркаптиды.



В щелочных растворах цистеин легко теряет атом серы. Так, при нагревании цистеина с ацетатом свинца в щелочном растворе образуется черный осадок сульфида свинца. Эта реакция применяется для обнаружения сульфгидрильной группы в пептидах и белках.

Тиоловая группа цистеина легко подвергается окислению с образованием дисульфида. Этот процесс можно отразить следующей схемой:



Дисульфидные связи, присоединяя два атома водорода, переходят в сульфгидрильные (тиоловые) группы:



Рассмотрим этот процесс на примере превращения цистеина в цистин:



В цистине при действии восстановителей дисульфидная связь разрывается и образуется две молекулы цистеина:



Дисульфидная связь может также подвергаться окислению под действием таких жестких окислителей, как, например, надмуравьиная кислота. В результате образуется цистеиновая кислота:



2. Реакции гидроксильной группы – реакции элиминирования.

Эти реакции характерны для аминокислот, содержащих в радикале гидроксильную группу в β-положении по отношению к карбоксильной группе (серин и треонин).

В результате ряда последовательных реакций аминокислота превращается в кетокислоту. Рассмотрим этот процесс на примере превращения треонина в 2-оксобутановую кислоту.



3. Реакции гуанидильной группы.

Гуанидильная группа содержится в радикале аргинина:



Гуанидильная группа аргинина легко отщепляется при гидролизе в избытке гидроксида бария при 1000С с образованием мочевины и орнитина:



Орнитин α-аминокислота, содержащая в радикале вторую аминогруппу, в состав белков не входит. Появляется в организме в результате гидролитического расщепления аргинина с участием фермента аргиназы. Аргиназа в значительных количествах содержится в печени и в малых количествах в почках и селезенке млекопитающих животных.

Специфические реакции α-аминокислот

Присутствие у одного атома углерода двух функциональных групп (аминогруппы и карбоксильной) приводит к появлению специфических реакций.

1. Образование пептидов реакция ацилирования одной аминокислоты другой аминокислотой:



Затем дипептид присоединяет следующую молекулу аминокислоты, образуя трипептид, и так далее:



2. Межмолекулярная циклизация образование дикетопиперазинов.

При отщеплении двух молекул воды от двух молекул аминокислот образуется циклический дипептид  дикетопиперазин:



Реакции аминокислот in vivo

Простые аминокислоты, как и многие другие простые «биологические молекулы», не накапливаются в клетке: как правило, их избыток разрушается при помощи реакций, которые снабжают живую систему энергией. Три основные реакции, катализируемые ферментами, благодаря которым осуществляется превращение аминокислот в клетке, это реакции дезаминирования, переаминирования и декарбоксилирования.

1. Дезаминирование аминокислот

В организме дезаминирование может осуществляться как неокислительным, так и окислительным путём.

Неокислительное дезаминирование встречается, в основном, у бактерий и грибов. Например, превращение аспарагиновой кислоты в фумаровую под действием фермента аспартазы.



Окислительное дезаминирование  протекает при участии фермента оксидазы. Для того чтобы полностью прошла реакция окислительного дезаминирования, фермент, катализирующий эту реакцию, нуждается в окислительном (дегидрирующем) агенте. Обычно акцептором водорода в таких системах служит ФАД (флавинадениндинуклеотид), который затем переходит в восстановленную форму, сокращённо обозначаемую ФАД-Н2.

Окислительное дезаминирование осуществляется через стадию образования промежуточного имина.

Рассмотрим процесс превращения аланина в пировиноградную кислоту.



Реакции дезаминирования позволяют организму удалять избыток аминокислот, однако при этом повышается концентрация нежелательных азотистых веществ. Высокие концентрации аммиака и его производных токсичны для организма, который поэтому стремится освободиться от них, выделяя лишний азот в виде мочевины или мочевой кислоты.



Мочевая кислота образуется в организме взрослого человека в качестве побочного продукта. Высокое содержание мочевой кислоты приводит к мочекаменной болезни. Мочевая кислота в виде кристаллов мононатриевой соли образует камни в почках и в мочевом пузыре. Соли мочевой кислоты в суставах вызывают болезненные симптомы подагры  очень широко распространенного заболевания человека. Содержание мочевой кислоты и её солей в организме человека может представлять интерес с точки зрения эволюционной теории, поскольку большинство животных полностью разлагают мочевую кислоту до её выделения из организма. Было высказано предположение о том, что присутствие мочевой кислоты в организме человека предоставляет людям некоторое эволюционное преимущество. Эта гипотеза ещё не доказана, но она может быть интересным связующим звеном между биохимическими свойствами вещества и поведением живых организмов.
2. Переаминирование (трансамнирование).

Реакция сводится к взаимопревращению аминогруппы и карбонильной группы под действием ферментов трансаминаз.

Эта реакция служит не только для разрушения аминокислот, но и для их биосинтеза. Рассмотрим реакцию взаимопревращения аспарагиновой кислоты и α-кетоглутаровой в щавелевоуксусную и глутаминовую кислоты:



Эта схема не отражает истинного механизма процесса.

Данное взаимопревращение нуждается в пиридоксальфосфате, который образует имин с исходной аминокислотой, сохраняет аминогруппу при превращении аминокислоты в соответствующую α-кетокислоту и образует имин с другой α-кетокислотой.

Рассмотрим процесс превращения аминокислоты I в α-кетокислоту I и
α-кетокислоты II в аминокислоту II.

Альдегидная группа пиридоксальфосфата образует имин с аминокислотой I, имин далее изомеризуется и после гидролиза выделяет кетокислоту I и пиридоксаминфосфат.



Таким образом, из исходной аминокислоты получилась кетокислота. Образовавшийся пиридоксаминфосфат далее реагирует с другой кетокислотой (кетокислота II), образуя имин, содержащий радикал новой кетокислоты (R). Имин далее изомеризуется и после гидролиза образует новую аминокислоту (аминокислота II):



По завершении всей сложной последовательности реакций, после гидролиза пиридоксальфосфат регенерируется и способен принять участие в следующих взаимопревращениях аминокислот и α-кетокислот.

Как своеобразную реакцию взаимопревращения аминокислоты и амидоаминокислоты, сопровождающуюся заменой амидогруппы одной аминокислоты на гидроксильную группу другой, можно рассматривать реакцию взаимодействия L-аспарагиновой кислоты и L-глутамина, катализируемую аспарагинсинтетазой в присутствии АТФ, и приводящую к образованию
L-аспарагина и L-глутаминовой кислоты.



3. Декарбоксилирование аминокислот.

Декарбоксилирование in vivo  это путь образования биогенных аминов. В организме эта реакция катализируется ферментами  декарбоксилазами. Некоторые амины обладают ярко выраженной биологической активностью. Интересной, например, является реакция образование дофамина при декарбоксилировании диоксифенилаланина, поскольку дофамин  это биологический предшественник адреналина.



В реакции декарбоксилирования, которая протекает при гниении белков, лизин и орнитин, образуют диамины: кадаверин и путресцин.



Интересной является реакция декарбоксилирования глутаминовой кислоты, так как она приводит к образованию γ-аминомасляной кислоты, которую рассматривают как природный транквилизатор.

Этот процесс также нуждается в присутствии пиридоксальфосфата.



Ярко выраженной биологической активностью обладает амин, образующийся при декарбоксилировании гистидина:



Гистамин является медиатором аллергии: он расширяет все периферические сосуды, что приводит к резкому падению артериального давления, нарушает проницаемость сосудистой стенки, что может быть одной из причин появления отеков, вызывает бронхоспазм и.т.д. Группа препаратов, применяемых в медицине для уменьшения проявления аллергических реакций, так или иначе связанных с гистамином, была названа антигистаминными препаратами.

4. Реакции гидроксилирования и карбоксилирования.

С помощью этих реакций в молекулу органического соединения вводится дополнительная гидроксильная или карбоксильная группы. Реакции протекают при участии соответствующих ферментов и приводят к образованию модифицированных аминокислот. Эти реакции не имеют аналогов в химии in vitro.

Гидроксилированием называют введение в молекулу органического соединения гидроксильной группы. Так, гидроксилирование фенилаланина приводит к образованию тирозина:



Отсутствие в организме фермента, катализирующего эту реакцию, приводит к тяжелому заболеванию  фенилкетонурии.

Значительный интерес представляет реакция гидроксилирования пролина:



Гидроксилирование пролина необходимо для стабилизации тройной спирали коллагена, которая осуществляется за счет образования водородных связей.

При цинге нарушается гидроксилирование остатков пролина и лизина. В результате образуются менее прочные коллагеновые волокна, что приводит к хрупкости и ломкости кровеносных сосудов.

Карбоксилированием называют введение в молекулу органического соединения карбоксильной группы. Таким образом получают, например,
γ-карбоксиглутаминовую кислоту:



γ-Карбоксиглутаминовая кислота входит в состав белков, участвующих в процессах свертывания крови, так как две близлежащие карбоксильные группы в её структуре способствуют более полному связыванию белковых факторов с ионами кальция:



Нарушение карбоксилирования глутамата приводит к снижению свертываемости крови.

Таким образом, модифицированные аминокислоты, имеющие в своих структурах дополнительные функциональные группы, приобретают свойства, необходимые для выполнения ими специфических функций.

5. Восстановительное аминирование.

Это реакция превращения α-кетокислот в α-аминокислоты осуществляется в организме при участии восстановленной формы никотинамидадениндинуклеотида (НАД∙Н). Так, продуктом метаболизма углеводов является α-кетоглутаровая кислота, которая в результате ряда реакций превращается в глутаминовую кислоту:



6. Альдольное расщепление.

Реакция протекает с α-аминокислотами, содержащими гидроксильную группу в β-положении углеводородного радикала.

Рассмотрим, например, реакцию расщепления серина, в результате которой образуются глицин и формальдегид.



В результате этой реакции расщепляется С-С связь между α- и
β-углеродными атомами. Образующийся формальдегид не выделяется, а связывается с другим коферментом  тетрагидрофолиевой кислотой и в качестве одноуглеродного фрагмента участвует далее в синтезе многих важных соединений.
1   2   3

Похожие:

Условное обозначение icon 1. 1Полное наименование Системы и её условное обозначение 6
Подсистема информационного взаимодействия с информационными ресурсами Росреестра 14
Условное обозначение icon 1. 1 Полное наименование системы и ее условное обозначение
Полное наименование системы: Единая автоматизированная система учета кадров всех государственных предприятий "ас кадры"
Условное обозначение icon 1Общие сведения 1Полное наименование системы и ее условное обозначение
Полное наименование системы: Комплекс средств автоматизации «Единый центр оперативного реагирования г. Краснодар», создаваемый на...
Условное обозначение icon Типы и основные характеристики аккумуляторов и батарей
Условное обозначение типа аккумуляторной батареи состоит из условного обозначения аккумуляторов и цифры перед буквами, означающей...
Условное обозначение icon Исо 2553  201 сварные и паяные швы условное обозначение на чертежах ( iso 2553: 2013, idt )
Российской Федерации установлены гост р 0-2012 «Стандартизация в Российской Федерации. Основные положения» и гост р 2-2014 «Стандартизация...
Условное обозначение icon Обозначение Наименование Страница Содержание 2

Условное обозначение icon Обозначение Наименование Кол. Заводской номер

Условное обозначение icon Техническое описание и инструкция по эксплуатации Оглавление
Формирователь акустических помех, условное наименование «Бубен», далее изделие, предназначен для работы в замкнутом пространстве...
Условное обозначение icon Руководство пользователя арм лечащего врача условное наименование «арм регион»
Телемедицинская система для проведения дистанционных консультаций является собственной разработкой нп «Центр детской телемедицины...
Условное обозначение icon Межгосударственный стандарт
Ссылочные нормативно-технические документы обозначение нтд, на который дана ссылка
Условное обозначение icon Обозначение Наименование
Адаптер последовательного канала rs232/RS485 для вычислителя увп-280 кгпш 407374. 012
Условное обозначение icon Комплекс стандартов на автоматизированные системы гост 34. 201-89
Виды, комплектность и обозначение документов при создании автоматизированных систем
Условное обозначение icon 31. 03. 2016 Кузбасс fm спасатели Кузбасса покажут свои профессиональные навыки
То есть, ликвидировать последствия автоаварии с пострадавшими. Спасатели потушат условное «возгорание», извлекут «потерпевших» из...
Условное обозначение icon Request for Taxpayer Identification Number and Certification
Коммерческое обозначение/наименование организации, не являющейся юридическим лицом, если отличается от указанного выше
Условное обозначение icon Инструкция по общей эксплуатации и обслуживанию вакуумных устройств
Обозначение се означает соответствие продукта европейским требованиям к охране здоровья, безопасности, окружающего пространства и...
Условное обозначение icon «Обнаружение и обозначение районов, подвергшихся радиоактивному,...
Министерство Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий

Руководство, инструкция по применению




При копировании материала укажите ссылку © 2024
контакты
rykovodstvo.ru
Поиск