Авиационный учебный центр «Северный Ветер» система управления безопасностью полетов (учебное пособие)


Скачать 0.79 Mb.
Название Авиационный учебный центр «Северный Ветер» система управления безопасностью полетов (учебное пособие)
страница 2/8
Тип Учебное пособие
rykovodstvo.ru > Руководство эксплуатация > Учебное пособие
1   2   3   4   5   6   7   8

ПРИЧИННОСТЬ ПРОИСШЕСТВИЙ. МОДЕЛЬ РИЗОНА
Признание концепции происшествия по организационным причинам в масштабе отрасли стало возможным благодаря простой, но графически емкой модели, разработанной профессором Джеймсом Ризоном. Согласно этой модели, для того чтобы произошло авиационное происшествие, требуется воздействие одновременно ряда содействующих факторов, каждый из которых необходим, но сам по себе недостаточен для нарушения защиты системы. Поскольку такие комплексные системы, как авиация, имеют чрезвычайно хорошую защиту из нескольких уровней, внутренние, единичные отказы редко имеют серьезные последствия в авиационной системе. Отказы оборудования или эксплуатационные ошибки никогда не являются причиной нарушения защиты безопасности, а скорее служат пусковыми факторами. Нарушение защиты безопасности представляет собой замедленное последствие решений, принимаемых на самых высших уровнях системы, которые

не проявляются до тех пор, пока их воздействие или разрушающий потенциал не будет инициирован конкретным стечением эксплуатационных обстоятельств. При таких конкретных обстоятельствах ошибки человека или активные отказы на эксплуатационном уровне действуют как пусковые механизмы скрытых условий, способствующих нарушению присущих системе средств защиты обеспечения безопасности полетов. В концепции, выдвигаемой моделью Ризона, все происшествия включают сочетание активных и скрытых условий.

Активные отказы – это действие или бездействие, включая ошибки и нарушения, которые оказывают прямое негативное воздействие. Они, как правило, считаются (задним числом) опасными действиями. Активные отказы, как правило, ассоциируются с непосредственными исполнителями (пилотами, диспетчерами УВД, авиационными инженерами-механиками и т. д.) и могут привести к аварийным последствиям. Они обладают потенциалом проникновения через средства защиты авиационной системы, предусмотренные организацией, регламентирующими органами и т. д. Активные отказы могут являться следствием обычных ошибок или они могут быть результатом отклонений от предписанных процедур и практики. В модели Ризона признается, что в любом эксплуатационном контексте присутствует много порождающих ошибки или нарушения условий, которые могут повлиять на индивидуальную или коллективную деятельность.

Активные отказы со стороны эксплуатационного персонала имеют место в эксплуатационном контексте, который включает скрытые условия. Скрытые условия представляют собой условия, присутствующие в системе задолго до проявления вредного воздействия, которые приводятся в действие местными пусковыми факторами. Последствия скрытых условий могут не проявляться в течение длительного времени. По отдельности такие скрытые условия обычно не считаются вредными, поскольку изначально они не рассматриваются как отказы. Скрытые условия проявляются после нарушения средств защиты системы. Лежащий в основе происшествия по организационным причинам подход направлен на выявление и уменьшение последствий этих скрытых условий на общесистемной основе, а не путем локальных мер по сведению к минимуму активных отказов со стороны отдельных лиц.



На рисунке модель Ризона изображена таким образом, чтобы можно было понять, какую роль в причинности авиационного происшествия играют организационные и управленческие факторы (т. е. системные факторы).

Модель SHEL

Простым, но визуально доходчивым концептуальным инструментом для анализа компонентов и особенностей эксплуатационных контекстов и их возможных взаимодействий с людьми является модель SHEL. Модель SHEL (иногда называется модель SHEL(L)) можно использовать для наглядного представления взаимосвязей между различными компонентами и особенностями авиационной системы. Основной акцент в данной модели делается на индивидуума и интерфейс человека с другими компонентами и особенностями авиационной системы. Эта модель представляет собой одну из разработок традиционной системы “человек-машина-среда”. Аббревиатура SHEL составлена из начальных английских названий ее 4-х составных элементов:

a) Субъект (L-Liveware) (люди на рабочих местах);

b) Объект (H-Hardware) (машины и оборудование);

c) Процедуры (S-Software) (правила, подготовка, документация и т. д.);

d) Среда (E-Environment) (эксплуатационные условия, в которых должны взаимодействовать остальные компоненты системы L-H-S).

Субъект. В центре модели SHEL находятся лица, выполняющие свои функции на

“передовом крае” производства. Хотя людям свойственна исключительная адаптивность, тем не менее их работоспособность подвержена значительным колебаниям. Человека нельзя стандартизировать в такой степени, как оборудование; поэтому границы этого блока не столь просты и прямолинейны. Люди не взаимодействуют идеальным образом с различными компонентами той среды, где они работают. В целях избежания напряженностей, которые могут ухудшить работоспособность человека, необходимо осознать последствия нестыковок на границе между различными блоками SHEL и центральным блоком “субъект”. Для предотвращения напряжения в системе необходимо добиться тщательной подгонки границ других ее компонентов.



Модель SHEL

Взаимодействие предусматривает следующее:

Субъект-объект (L-H). Чаще всего вопрос о взаимосвязях между человеком и машиной

(эргономика) возникает, когда речь идет о человеческом факторе. Они определяют систему интерфейса человека с физической производственной средой: например, конструкция кресел с учетом характеристик человеческого тела, дисплеев с учетом сенсорных характеристик и возможностей усвоения информации пользователем, а также органов управления с удобными для пользователя движениями, кодированием и размещением. Однако для человека характерна естественная тенденция приспосабливаться к дефектам интерфейса “L-H”. Такая тенденция способна маскировать серьезные недостатки, которые могут проявиться только после авиационного происшествия.

Субъект-процедуры (L-S). Интерфейс L-S представляет собой взаимосвязи человека с системами обеспечения, имеющимися на рабочем месте, например, правила, руководства,

контрольные перечни, издания, СЭП и программное обеспечение ЭВМ. Данный интерфейс включает такие “ориентированные на пользователя” аспекты, как актуальность, точность, форма представления, терминология, ясность и символика.

Субъект-субъект (L-L). Интерфейс L-L представляет собой взаимосвязи индивидуума с

другими лицами на рабочем месте. Летные экипажи, диспетчеры УВД, инженеры по техническому обслуживанию воздушных судов и другой эксплуатационный персонал работают в коллективах, и поэтому взаимоотношения, складывающиеся в таком коллективе, накладывают свой отпечаток на их поведение и работоспособность. Данный интерфейс охватывает такие аспекты, как лидерство, сотрудничество, взаимодействие в команде и межличностные отношения. С появлением концепции оптимизации работы экипажа в кабине (CRM) этому виду интерфейса стало уделяться значительное внимание. Подготовка по программам CRM и ее распространение на сферу ОВД (оптимизация работы команды – TRM) и технического обслуживания (оптимизация работы персонала технического обслуживания – MRM) способствует повышению эффективности взаимодействия и нацелено на контролирование естественных ошибок человека. В поле зрения этого интерфейса находятся также взаимоотношения между коллективом и его руководителями, а также аспекты корпоративной культуры, психологического климата в коллективе и производственных нужд авиакомпании, все из которых могут существенно влиять на работоспособность человека.

Субъект-среда (L-E). Данный вид интерфейса охватывает взаимосвязи между индивидуумом и внутренней и внешней средой. Внутренняя производственная среда включает такие физические параметры, как температура, освещение, уровень шума, вибрация и качество воздуха. Внешняя среда (для пилотов) включает такие аспекты, как видимость, турбулентность и рельеф местности. Условия работы авиации (круглосуточный режим 7 дней в неделю) все чаще связаны с нарушением нормальных биологических ритмов, таких, как режим сна. Кроме того, авиационная система функционирует в условиях наличия большого числа политических и экономических ограничений, которые в свою очередь оказывают влияние на общую ситуацию в той или иной организации. Сюда можно отнести такие факторы, как адекватность физических средств и вспомогательной инфраструктуры, финансовое положение на местах и эффективность регулирования. В той же мере как непосредственная производственная среда может создать напряженные ситуации, вынуждающие выбирать кратчайший путь, так и неадекватная вспомогательная инфраструктура может поставить под угрозу качество принимаемых решений.

Необходимо проявлять осторожность, чтобы проблемы (опасные факторы) не “провалились через трещины” на границах интерфейсов. В большинстве случаев проблему “шероховатостей” этих интерфейсов можно устранить, например:

a) проектировщик может обеспечить надежность работы данного оборудования в оговоренных эксплуатационных условиях;

b) в процессе сертификации регламентирующий орган имеет возможность установить условия, при которых это оборудование можно использовать;

c) администрация организации может установить СЭП и обеспечить первоначальную подготовку и последующую регулярную переподготовку по безопасному использованию данного оборудования;

d) каждый оператор оборудования может изучить данное оборудование и обеспечить его уверенное использование безопасным образом при любых необходимых условиях эксплуатации.

ОШИБКИ И НАРУШЕНИЯ

Эксплуатационные ошибки

Людям на переднем крае, таким как эксплуатационный персонал, приходится ежедневно взаимодействовать с техникой при выполнении своих производственных задач по предоставлению соответствующих услуг. Если на этапе проектирования техники не уделять должного внимания интерфейсу "объект – субъект" и игнорировать эксплуатационные последствия взаимодействия человека и машины, результат очевиден –

эксплуатационные ошибки.

Концепция эксплуатационных ошибок как формирующееся свойство систем человек/машина изымает источник эксплуатационной ошибки из человека и помещает его прямо в физически реальный мир – в интерфейс L/H. Нестыковка этого интерфейса является источником эксплуатационной ошибки. Являясь частью физически реального мира, источник эксплуатационной ошибки таким образом становится видимым и может быть выражен оперативными терминами (выключатель частично закрыт тумблером, что затрудняет увидеть его правильное положение при работе в ночное время) по сравнению с научными терминами (перцептивные ограничения).

Три стратегии контроля эксплуатационных ошибок

Три базовые стратегии контроля эксплуатационных ошибок основаны на трех базовых средствах защиты авиационной системы: техника, подготовка кадров и нормальные положения (включая процедуры).

Стратегия уменьшения применяется непосредственно в источнике эксплуатационной ошибки путем уменьшения или устранения факторов, способствующих возникновению эксплуатационной ошибки. К примерам стратегии уменьшения относятся: облегчение доступа к компонентам воздушного судна для технического обслуживания, улучшение освещения в зоне выполнения работ и уменьшение количества отвлекающих моментов в

окружающей обстановке, т. е.:

а) ориентированная на человека конструкция;

b) эргономические факторы;

с) подготовка кадров.

Стратегия перехвата предполагает, что эксплуатационная ошибка уже совершена. Цель – "перехватить" эксплуатационную ошибку, прежде чем возникнут какие-либо негативные последствия данной эксплуатационной ошибки. Стратегия перехвата отличается от стратегии уменьшения в том, что она непосредственно не служит средством устранения данной ошибки, т. е.:

а) контрольные карты;

b) технологические карты выполнения работ;

с) ленты хода полета.

Стратегия толерантности – это способность системы реагировать на эксплуатационную ошибку без серьезных последствий. Примером мер, направленных на повышение толерантности системы к эксплуатационным ошибкам является установка на борту нескольких гидравлических или электрических систем для обеспечения избыточности или программа осмотра элементов конструкции, предоставляющая все возможности для обнаружения усталостной трещины, до того как она достигнет критических размеров,

т. е.:

а) избыточность систем;

b) осмотры элементов конструкции.

Эксплуатационные ошибки и нарушения.

Основное различие между эксплуатационными ошибками и нарушениями заключается в намерении. В то время как ошибка – это непреднамеренный поступок, нарушение является умышленным действием. Люди, совершающие эксплуатационные ошибки, стараются делать то, что нужно, однако по многим причинам они не могут достичь ожидаемых ими результатов. И наоборот, люди, совершающие нарушения, знают, что предпринимаемые ими действия приводят к отклонению от установленных правил, регламента, норм или практики, но они все-таки продолжают упорствовать в своем намерении.

Существует два главных типа нарушений: ситуативные нарушения и рутинные нарушения.

Ситуативные нарушения происходят из-за конкретных факторов, существующих на данный момент, таких как нехватка времени или высокая рабочая нагрузка. Несмотря на то, что люди осознают, что совершают нарушение, целенаправленность в достижении задачи заставляет их отклоняться от норм, полагая, что данное отклонение не приведет к негативным последствиям.

Рутинные нарушения – это нарушения, которые становятся "нормальным способом ведения дел" в рабочей группе. Они имеют место, когда у рабочей группы возникают трудности с выполнением установленных правил работы из-за проблем с практическим исполнением/работопригодности, недостатков в организации интерфейса человек-машина и т. д., и она неофициально разрабатывает и принимает к использованию "лучшие" правила, которые в конечном счете становятся рутинными. Они считаются средствами "оптимизации", поскольку нацелены на экономию времени и усилий путем упрощения выполнения задачи (даже если это влечет за собой срезание углов).

Третьим типом нарушений, которым часто пренебрегают, являются вынуждаемые организацией нарушения, которые можно рассматривать как дальнейшее проявление рутинных нарушений.

Культурологические факторы

Культура оказывает влияние на ценности, убеждения и нормы поведения, которые мы разделяем с другими членами наших различных социальных групп. Культура объединяет нас вместе как членов групп и подсказывает нам, как вести себя в нормальных и нештатных ситуациях. Некоторые люди рассматривают культуру как “коллективное программирование ума”. Культура является сложной социальной динамикой, которая устанавливает правила игры или рамки всех наших межличностных взаимоотношений. Она представляет собой всю совокупность методов, используемых людьми для осуществления своей деятельности в конкретной социальной среде. Культура формирует контекст, в котором происходят все события. Что касается управления безопасностью полетов, то осознание этого контекста, называемого культурой, является решающим фактором, позволяющим определить характеристики работоспособности человека и пределы его возможностей.

Авиационная безопасность должна быть выше национальных границ, включая все культуры внутри этих стран. В глобальном масштабе авиационная отрасль достигла замечательных успехов в стандартизации всех типов воздушных судов независимо от стран и народов. Тем не менее, нетрудно заметить различие в реакции людей в одних и тех же ситуациях. Поскольку работающие в данной отрасли люди взаимодействуют между собой (интерфейс "субъект-субъект" (L-L)), на их действия влияет различное культурное прошлое. В различных культурах приняты различные методы решения одних и тех же проблем.

Организации не свободны от культурологических проблем. Принятые в организации нормы поведения подвержены этому влиянию на каждом уровне. На действия в сфере управления безопасностью полетов могут влиять следующие три уровня культуры:

a) Национальная культура признает и отражает национальные черты и систему ценностей конкретных наций.

b) Профессиональная культура признает и отражает поведение и характерные черты конкретных профессиональных групп (например, типичное поведение пилотов по сравнению с типичным поведением диспетчеров УВД или инженеров по техническому обслуживанию воздушных судов).

c) Корпоративная культура признает и отражает поведение и ценности конкретных организаций (например, поведение сотрудников одной компании по сравнению с поведением персонала другой компании или поведение людей в государственном секторе по сравнению с частным сектором).
1   2   3   4   5   6   7   8

Похожие:

Авиационный учебный центр «Северный Ветер» система управления безопасностью полетов (учебное пособие) icon В. Н. Антонова и заместителя генерального директора директора летного комплекса
Памятка предназначена для общего ознакомления персонала с основами идеологии управления безопасностью полетов и оказания помощи в...
Авиационный учебный центр «Северный Ветер» система управления безопасностью полетов (учебное пособие) icon Учебный Центр «Северный Ветер»
Программа подготовки летного состава к полетам в регионах в условиях rvsm рассмотрена и одобрена Учебно-методическим советом ассоциации...
Авиационный учебный центр «Северный Ветер» система управления безопасностью полетов (учебное пособие) icon 1. система управления безопасностью дорожного движения в тдк россии...
Подготовки и переподготовки специалистов по безопасности движения на автомобильном и городском электротранспорте
Авиационный учебный центр «Северный Ветер» система управления безопасностью полетов (учебное пособие) icon Авиационный Учебный Центр
Программа предназначена для подготовки летного состава вс боинг-757-200, по проведению предполетного и послеполетного наземного обслуживания...
Авиационный учебный центр «Северный Ветер» система управления безопасностью полетов (учебное пособие) icon Учебное пособие Казань 2005 удк 65. 01 (075. 8) Ббк 65. 29 Б 69 Бурганова...
В текст пособия введены программа дисциплины «Теория управления», материалы по организации самостоятельной работы студентов, включая...
Авиационный учебный центр «Северный Ветер» система управления безопасностью полетов (учебное пособие) icon Учебное пособие по курсу «Особенности россииского менеджмента» м...
Учебное пособие по курсу «Особенности россииского менеджмента» м международный университет бизнеса и управления, 2002 328 С
Авиационный учебный центр «Северный Ветер» система управления безопасностью полетов (учебное пособие) icon Учебное пособие
...
Авиационный учебный центр «Северный Ветер» система управления безопасностью полетов (учебное пособие) icon Между
Приложение 1 Стандарт компании «Система управления безопасностью дорожного движения»
Авиационный учебный центр «Северный Ветер» система управления безопасностью полетов (учебное пособие) icon Селезнева Н. Е. Бесстыковой путь. Что такое техническое обслуживание...
Пособие бригадиру пути: Учебное пособие / Под ред. Э. В. Воробьева. — М.: Фгбоу «Учебно-методический центр по образованию на железнодорожном...
Авиационный учебный центр «Северный Ветер» система управления безопасностью полетов (учебное пособие) icon Учебное пособие
М74 модели и методы управления персоналом: Российско-британское учебное пособие /Под ред. Е. Б. Моргунова (Серия «Библиотека журнала...
Авиационный учебный центр «Северный Ветер» система управления безопасностью полетов (учебное пособие) icon Документы регламентирующие летную работу основные правила полетов...
Союза сср, Положением об использовании воздушного пространства рф, Инструкцией по применению Положения об использовании воздушного...
Авиационный учебный центр «Северный Ветер» система управления безопасностью полетов (учебное пособие) icon Управление проектами Учебное пособие Новосибирск
Учебное пособие предназначено для студентов высших учебных заведений, обучающихся по специальности 080507 "Менеджмент организации"...
Авиационный учебный центр «Северный Ветер» система управления безопасностью полетов (учебное пособие) icon Бурлюкина Е. В., Васильченко Н. Г. Экономика отрасли Учебное пособие...
Рецензенты: Кафедра «Экономики и управления предприятием» Московского государственного университета инженерной экологии, зав кафедрой:...
Авиационный учебный центр «Северный Ветер» система управления безопасностью полетов (учебное пособие) icon Программа представляет собой систему управления безопасностью производством
Хассп или в английской транскрипции насср hazard analysis and critical control points (Анализ рисков и критические контрольные точки),...
Авиационный учебный центр «Северный Ветер» система управления безопасностью полетов (учебное пособие) icon А. И. Ермаченко исследование систем управления учебное пособие
Многофункциональные интегрированные системы процессно-ориентированного управления для организаций
Авиационный учебный центр «Северный Ветер» система управления безопасностью полетов (учебное пособие) icon Информатика
Учебное пособие предназначено для студентов гбпоу ио «иттриС» заочного отделения, обучающихся по специальностям тора, тэпс и опут....

Руководство, инструкция по применению




При копировании материала укажите ссылку © 2024
контакты
rykovodstvo.ru
Поиск