Теория нейронных сетей


Скачать 0.86 Mb.
Название Теория нейронных сетей
страница 2/21
Тип Литература
rykovodstvo.ru > Руководство эксплуатация > Литература
1   2   3   4   5   6   7   8   9   ...   21

1.2.Нейронная сеть



На рис.1.3 показан фрагмент нейросети, по которому можно представить следующее.




Рис. 1.3. Фрагмент нейронной сети

  1. В сети распознают входной (рецепторный) слой, воспринимающий сигналы внешнего возбуждения (например, экран, на который подается видеоизображение), и выходной слой, определяющий результат решения задачи распознавания или принятия решений. Работа сети тактируется для имитации прохождения по ней возбуждения и управления им.

  2. Каждый нейрон обрабатывает сигнальную информацию (это важнейший принцип логической нейронной сети!) в диапазоне от нуля до условной единицы. Исходные данные в виде сигналов поступают (от пользователя, от блока обработки ситуации на входе, от другой нейронной сети и т.д.) или формируются (например, с помощью видео ввода) на рецепторном слое.

  3. Функции активации бывают различны, но просты по объему вычислений. В простейшем случае такая функция совпадает с линейной формой, где аргументы, показанные на рис.1.2, связаны операцией вычитания. Часто удобно не вычитать порог, а только лишь сравнивать с ним указанную сумму. Другие, не менее простые, функции активации будут рассмотрены в соответствии с целесообразным их применением.

  4. Найденная взвешенная сумма, превысившая порог, или величина превышения порога является величиной возбуждения нейрона либо определяет значение величины возбуждения (например, в некоторых моделях величина возбуждения всегда равна единице, отсутствие возбуждения соответствует нулю). В некоторых моделях допускают и отрицательную величину возбуждения. Значение возбуждения передается через ветвящийся аксон в соответствии со связями данного нейрона с другими нейронами.

  5. По дендритам может передаваться как возбуждающее, так и тормозящее воздействие. Первое может соответствовать положительному значению веса синапсической связей , второе — отрицательному. В нейронной сети возможны обратные связи.

  6. Нейронная сеть работает в двух режимах: в режиме обучения и в режиме распознавания (рабочем режиме).

В режиме обучения на рецепторном слое сети предъявляются эталоны. Веса связей на пути прохождения возбуждения формируют таким образом, чтобы на выходном слое максимально возбудился нейрон, с которым связано решение по данному эталону. Например, если показан эталон буквы А, то (по прошествии нескольких тактов, в течение которых промежуточные нейроны считают значения функции активации и передают результаты далее в соответствии со своими связями) максимально должен возбудиться нейрон, связанный с решением: "Это буква А". В рабочем режиме (в режиме распознавания), в результате показа буквы А, даже искаженной и "зашумленной", должен максимально возбудиться соответствующий нейрон выходного слоя. Так достигается эффект ассоциативного мышления.

Таким образом, "подкручивая" веса, мы учим сеть по эталонным ситуациям, по которым мы знаем решение, а затем в рабочем режиме она выдает нам решение во всем диапазоне ситуаций. При этом она автоматически решает проблему, на какую "знакомую" ей ситуацию похожа более всего предъявленная ситуация, и, следовательно, какое решение следует выдать. Конечно, — с определенной вероятностью правильности.

Это открывает широкие возможности "живого" моделирования, не только в сфере развлечений, как показано на рисунках 1.4 и 1.5, но и в сфере интеллектуального отображения. Например, "реагирующие объекты" могут своим поведением указывать на нарушение технологического процесса, на перегрузку коммуникационной сети, предвещать стихийные бедствия и т.д.

Однако то, что изображено на рис.1.3, больше соответствует воплощению в природе – в мозге. Искусственные нейронные сети значительно проще. Они сводятся к однослойным, где сигналы с рецепторов сразу обрабатываются нейронами единственного слоя, являющегося выходным. Да и формирование весов, в природе связанное со сложными биохимическими процессами, на логическом уровне реализуется исключительно просто. Как это происходит, будет рассмотренно далее на примерах построения систем принятия решений.



Рис. 1.4. Реакция на угрозу



Рис. 1.5. Реакция на поощрение

1   2   3   4   5   6   7   8   9   ...   21

Похожие:

Теория нейронных сетей icon Курс лекций по дисциплине «Аппаратные средства телекоммуникационных систем» Содержание
Транспортные сети. Структура и технологии транспортных сетей. Модели транспортных сетей. Принципы построения транспортных сетей....
Теория нейронных сетей icon Резюме Гончаров Дмитрий Владимирович
Сравнительная политология, Российская политика, Политическая теория, Посткоммунизм, Теория политического участия
Теория нейронных сетей icon Методическое пособие для учителя к курсу «Окружающий мир»
Д. Б. Эльконина, В. В. Давыдова, В. В. Репкина (теория учебной деятельности), Г. А. Цукерман (теория организации содержательного...
Теория нейронных сетей icon Теория и методика велосипедного спорта
Задачами курса лекций является раскрытие содержания учебной дисциплины «Теория и методика велосипедного спорта», обеспечение студентов...
Теория нейронных сетей icon Теория и методика велосипедного спорта
Задачами курса лекций является раскрытие содержания учебной дисциплины «Теория и методика велосипедного спорта», обеспечение студентов...
Теория нейронных сетей icon Теория и методика велосипедного спорта
Задачами курса лекций является раскрытие содержания учебной дисциплины «Теория и методика велосипедного спорта», обеспечение студентов...
Теория нейронных сетей icon Способ жизни в эру водолея теория и практика самопознания и самооздоровления москва
Теория и практика великого закона (Из неопубликованной рукописи мыслителя и духовидца) 93
Теория нейронных сетей icon Лабораторная работа № Исследование технологии Frame Relay в сетях передачи данных
Лабораторные работы предназначены для проведения занятий в компьютерных классах при изучении дисциплин “Сети связи”, “Мультисервисные...
Теория нейронных сетей icon Теория и практика
Физкультурное образование: теория и практика. Сборник материалов научно-исследовательской деятельности профессорско-преподавательского...
Теория нейронных сетей icon Учебно-методический комплекс по дисциплине «Теория организации»
«Теория организации» разработан в соответствии с требованиями федерального государственного образовательного стандарта по направлению...
Теория нейронных сетей icon Королев В. Ю. Теория вероятностей и математическая статистика / В. Ю.
Вентцель Е. С. Теория вероятностей / Е. С. Вентцель. – М.: Высш шк., 2003. – 520 с
Теория нейронных сетей icon Программа итогового государственного междисциплинарного экзамена...
По специальности 031201. 65 – «теория и методика преподавания иностранных языков и культур»
Теория нейронных сетей icon Образовательная программа «Теория и методика обучения иностранным...
I. Теоретические вопросы обучения студентов восточников англоязычному деловому дискурсу
Теория нейронных сетей icon Лекция Отечественная историография Гражданской войны в России Лекция...
Лекция Национальная политика советского государства: теория и практика вопроса
Теория нейронных сетей icon Рабочая программа дисциплины Теория отраслевых рынков Направление...
Программа учебного курса «Теория отраслевых рынков» составлена в соответствии с требованиями к обязательному минимуму содержания...
Теория нейронных сетей icon Проектирования и строительства сетей доступа fttb
Предпосылки развития сетей и услуг ОАО «Ростелеком» на базе новых принципов и технологий 5

Руководство, инструкция по применению




При копировании материала укажите ссылку © 2024
контакты
rykovodstvo.ru
Поиск