Скачать 2.43 Mb.
|
Глава 3 Анализ различий Цель анализа различий — выявление групп респондентов, статистически значимо различающихся между собой. Все статистические процедуры, относящиеся к группе процедур, которые позволяют выявить такие различия (t-тесты и дисперсионный анализ), сравнивают респондентов на основании средних значений переменных. Иными словами, провести различие можно на основании двух или более числовых переменных. В практике маркетинговых исследований достаточно часто встречаются ситуации, когда в ходе предварительного анализа (на основании опыта исследователя, когнитивного или статистического анализа) появляется гипотеза о разделении всей выборочной совокупности на определенные группы на основании одного или нескольких признаков (например, при сегментировании потребителей продукта или при построении разрезов). Линейное распределение может показывать, что данные группы респондентов действительно различаются (например, мужчин в выборке в два раза больше, чем женщин). Однако визуального различия между категориями недостаточно для того, чтобы с уверенностью констатировать наличие статистически значимого различия. На установление статистической значимости различий между целевыми группами респондентов и направлены процедуры, объединенные под названием «Анализ различий». Существует два основных метода определения различий между группами: t-тесты и дисперсионный анализ. Первый метод прост в использовании, и поэтому он применяется часто (в том числе и в маркетинговых исследованиях). Однако в связи с ограничением на количество тестируемых групп (между которыми устанавливается различие) t-тесты не могут применяться для решения всех задач, возникающих при проведении маркетингового анализа. Для преодоления данного ограничения используется дисперсионный анализ, являющийся универсальной методикой для определения статистически значимых различий между любым числом групп респондентов. 3.1. Т-тесты Т-тесты предназначены для установления различий между двумя группами респондентов. При этом сравниваются только два средних значения. SPSS предлагает три основных типа t-тестов: ■ для двух независимых выборок; ■ для двух зависимых выборок; ■ для одной выборки. В последующих разделах мы подробно расскажем о каждом из них, но сначала приведем основные характеристики переменных, участвующих в t-тестах (табл. 3.1).
Обратите внимание: зависимая переменная есть только для t-тестов независимых выборок. Для других видов t-тестов (зависимых выборок и одной выборки) зависимая переменная отсутствует. Это связано с тем, что в последнем случае анализу подвергается фактически одна и та же выборка респондентов. В качестве тестируемых независимых переменных во всех случаях используются только переменные с интервальной шкалой. Порядковые переменные могут использоваться только после преобразования их к интервальному виду (см. раздел 2.1). 3.1.1. Т-тесты для независимых выборок В случае t-тестов для независимых выборок под независимыми выборками понимаются бинарные категории (то есть варианты ответа) какой-либо переменной. Например, мужчины и женщины (вопрос Пол респондента), покупатели и не покупатели какого-либо продукта (вопрос Покупаете ли Вы данный продукт?) и т. д. То есть когда есть два уровня группирующей (зависимой) переменной и несколько независимых переменных, на основании которых и будет выполняться различие между группами зависимой переменной. Рассмотрим методику проведения t-тестов для независимых выборок на следующем примере. Предположим, что мы оцениваем различия в частоте посещения игровых клубов между посетителями заведений марки X и других марок. Откройте диалоговое окно Independent-Samples T Test при помощи меню Analyze ► Compare Means ► Independent-Samples T Test (рис. 3.1). В область Test Variable(s) поместите переменные, являющиеся критерием для установления различий (в нашем случае это ql8_i Частота посещения). Затем в поле Grouping Variable переместите переменную, которая будет являться группирующей (зависимой). В нашем случае это переменная ql_8, кодирующая категории респондентов, посещающих/не посещающих игровые залы марки X. Рис. 3.1. Диалоговое окно Independent-Samples T Test Так как данная переменная является вариантом ответа на многовариантный вопрос Какие игровые клубы Вы посещаете?, она может принимать два значения: ■ 1 — посещают клубы X; ■ 0 — не посещают клубы X. Э ти два значения необходимо указать в специальном диалоговом окне Define Groups, вызываемом одноименной кнопкой (рис. 3.2). Обратите внимание, что если вместо дихотомии мы имеем группирующую переменную с интервальной шкалой, это диалоговое окно позволяет установить точку отсечения Cut point, которая буде! разделять все возможные значения данной переменной на две группы. Рис. 3.2. Диалоговое окно Define Groups С помощью кнопки Options в главном диалоговом окне рассматриваемой процедуры можно установить доверительный уровень для результатов расчета t-теста (рис. 3.3). По умолчанию установлен уровень доверия 95 %. Как было показано выше в разделе 1.2, этот уровень точности (достоверности) результатов является достаточным при проведении статистического анализа в маркетинговых исследованиях. Рис. 3.3. Диалоговое окно Independent-Samples T Test: Options После завершения процедуры расчета t-теста в окне SPSS Viewer будут отражены результаты (рис. 3.4). В первой таблице Group Statistics вы видите средние значения тестируемой переменной (частота посещения клубов) для обеих групп зависимой переменной X. Как следует из рисунка, для респондентов, посещающих игровые залы марки X, средняя частота посещения составляет 11,9 раз в месяц. Для респондентов, не посещающих данные залы, это значение равно 11,5. Вторая таблица Independent Samples Test позволяет установить статистическое различие между данными значениями. T Group Statistios -Test
Indeperdert Samples Test
Рис. З.4. Результаты расчета t-теста для независимых выборок Анализ этой таблицы начинается с определения значимости теста Ливина (Levene). Данный тест служит для тестирования гипотезы о равенстве дисперсий в тестируемых переменных. Если значение в столбце Sig. столбца Levene's Test for Equality of Variances показывает статистическую незначимость теста (в нашем случае — 0,547), то различие между двумя анализируемыми средними определяется из строки Equal variances assumed. В противном случае, если тест Levene статистически значим, различие между двумя средними определяется из строки Equal variances not assumed. Поскольку в нашем примере тест Ливина является статистически незначимым, то определить значимость различия между двумя тестируемыми группами можно при помощи значения, находящегося на пересечении первой строки и столбца Sig. (2-tailed). Значение 0,777 говорит о том, что различие в частоте посещения игровых залов респондентами, посещающими и не посещающими клубы марки X, является статистически незначимым. 3.1.2. Т-тесты для спаренных выборок Т-тесты для спаренных выборок применяются в случае, когда на различные вопросы отвечает одна и та же группа респондентов. Например, пассажиры оценивают уровень и качество питания авиакомпании X и авиакомпании Y. Чтобы определить, является ли статистически значимой разница в оценке этих двух авиакомпаний, следует воспользоваться диалоговым окном Paired-Samples T Test, вызываемым при помощи меню Analyze ► Compare Means ► Paired-Samples T Test (рис. 3.5). В левом списке содержатся все доступные переменные из базы данных. Выберите из списка две переменные для тестирования. В нашем случае это qll (Питание в авиакомпании X) и q26 (Питание в авиакомпании Y). По мере того как вы будете выбирать переменные, они будут последовательно отображаться в области Current Selections. Указав две переменные для анализа, щелкните на кнопке с символом ► , чтобы перенести переменные в область Paired Variables. Кнопка Options позволяет установить уровень доверия для производимых расчетов. Рис. 3.5. Диалоговое окно Paired-Samples T Test После щелчка на кнопке ОК будут произведены расчеты t-теста для анализируемых переменных; результаты теста будут отражены в окне SPSS Viewer (рис. 3.6). Как видно на рисунке, SPSS выводит на экран три таблицы. Рассмотрим их по порядку. Итак, в первой таблице, Paired Samples Statistics, вы видите рассчитанные средние значения для обеих тестируемых переменных. Так, в нашем случае респонденты оценили питание в авиакомпании Y в среднем на 0,4 балла выше, чем в авиакомпании X. В следующей таблице Paired Samples Correlations представлен коэффициент корреляции (Пирсона) между оценками двух анализируемых переменных. Подробно корреляционный анализ рассматривается в разделе 4.2. Здесь стоит сказать лишь, что чем ближе значение коэффициента к 1, тем сильнее линейная связь между переменными (при условии статистической значимости коэффициента). То есть чем выше уровень оценки по первой переменной, тем выше оценка второй — и наоборот. В нашем случае налицо отсутствие линейной связи между оценками питания в авиакомпании X и Y (коэффициент корреляции = 0,027 при статистической значимости 0,463). T Paired Samples Statistics -Test
Paired Samples Correlations
Paired Samples Test
Наконец, третья таблица, Paired Samples Test, позволяет сделать вывод о наличии/ отсутствии статистически значимого различия между тестируемыми переменными, что следует из значения в столбце Sig. (2-tailed). В нашем случае различие между оценками питания в авиакомпаниях X и Y, равное 0,4 балла, является статистически значимым (<0,001). |
Бенчмаркинг и маркетинговые исследования в разработке стратегий маркетинга Практика показала необходимость разделения функций отдельных отделов и служб в целях выделения специализированной службы по организации... |
Программа дисциплины «Стратегия социальных и маркетинговых исследований»... Курс «Стратегия социальных и маркетинговых исследований» рассчитан на студентов магистратуры, имеющих квалификацию бакалавра экономики... |
||
Неотложные меры самопомощи и взаимопомощи при сердечном приступе Помимо этого статистика показывает, что многие больные сами (или их родственники) поздно вызывают врача скорой медицинской помощи,... |
План Особенности маркетинга на рынке услуг Характеристика услуг и их классификация Организация управления маркетингом компании «Аэрофлот – Российские Международные Авиалинии» |
||
Самопомощи и взаимопомощи при развитии острых жизнеугрожающих заболеваний (состояний) Помимо этого статистика показывает, что многие больные сами (или их родственники) поздно вызывают врача скорой медицинской помощи,... |
Комплекс маркетинга Раздел Организация производственного маркетинга... Систематизация основных рекомендаций по созданию комплекса маркетинговых мероприятий на ООО "Бина" |
||
Власть Как выяснилось, многие кыргызы недовольны своей жизнью. Это перечеркивает на корню "результаты исследований" ангажированных западных... |
Программа дисциплины Теория и практика онлайн исследований для направления... К. социол н., генеральный директор компании Online Market Intelligence () |
||
Использование средств маркетинга в антикризисном управлении на транспорте Данные и многие другие факторы в условиях кризисов, в поисках путей выхода транспортных организаций из трудных ситуаций обусловливают... |
Курсовая работа по курсу “Основы маркетинга” Тема «Стратегии маркетинга... Санкт-Петербургский государственный технологический институт (технический университет) |
||
Система работы с детьми, имеющими задержку речевого развития Логопедическая практика показывает, что с каждым годом увеличивается количество детей с задержкой речевого развития |
Инструкция показания дисплея: Этот будильник off-the-wall показывает... Примечание: если появится надпись "p m.", то часы показывают время пополудни (дневное). В противном же случае часы показывают время... |
||
Инструкция по сбору суточной порции мочи с консервантом для исследований Важно! Зафиксировать время начала и время окончания сбора, а также (диурез) итоговый обьем собранного биоматериала |
1 Теоретические аспекты анализа сбытовой политики 8 Многие специалисты по менеджменту определили, что недостаточная эффективность сбытовой деятельности ставит под угрозу существование... |
||
1. 2Принципы работы erp-системы Мировая практика последних лет показывает, что эффективное решение подобных задач достигается путем развертывания информационных... |
Доклад Тема: Суицид среди несовершеннолетних. «Группы смерти» в социальных сетях Несмотря на пристальное публичное внимание к проблеме использования социальных сетей для подталкивания детей и подростков к суициду,... |
Поиск |