Тема 7.
7.1. ПИТЬЕВАЯ ВОДА: ГЕОХИМИЧЕСКИЕ ЭНДНМИИ, АНТРОПОГЕННЫЕ ЭНДЕМИИ
ПИСАТЬ
7.2 МЕТОДЫ ОЧИСТКИ, ОБЕЗЗАРАЖИВАНИЯ И УЛУЧШЕНИЯ КАЧЕСТВА ПИТЬЕВОЙ ВОДЫ
Классификация и характеристика методов очистки воды
Методы очистки воды классифицируются на физические (отстаивание и фильтрация) и химические (коагуляция).
Отстаивание и фильтрация позволяет удалить грубую муть (песок, яйца гельминтов, частично микроорганизмы и органические остатки).
Коагуляция с последующей фильтрацией позволяет удалить коллоидную взвесь и за счет этого осветлить воду, снизить цветность, жесткость и концентрацию фторидов в воде. Для коагуляции используют собственно коагулянты, вызывающие слипание частиц, их агрегацию и оседание агрегатов в виде хлопьев и комочков, что сопровождается адсорбцией органических примесей, микроорганизмов, яиц гельминтов и пр. В качестве коагулянтов применяют соли поливалентных металлов (железа и алюминия) – сернокислый алюминий, глинозем (глину, содержащую диоксид алюминия), которые при взаимодействии с водой образуют амфотерные гидроксиды в виде студенистых хлопьев. Остаточные количества сернокислого алюминия гигиенически нормируются, поскольку растворимые соединения алюминия при избыточном поступлении в организм с водой неблагоприятно влияют на центральную нервную систему, красную и белую кровь и кислотно-щелочное равновесие (ПДК = 0,5 мг/л). В качестве флоккулянтов, облегчающих и ускоряющих процесс коагуляции, применяют водорастворимые высокомолекулярные соединения, например, полиакриламид (остаточная ПДК = 2 мг/л).
Методы обеззараживания воды
Методы обеззараживания воды классифицируются на физические (нереагентные) и химические (реагентные).
Нереагентные методы обеззараживания воды: кипячение, обработка ультрафиолетовым (УФ) излучением, гамма-лучами, ультразвуком, электрическим током высокой частоты и пр. Нереагентные методы имеют преимущества, поскольку не приводят к образованию в воде остаточных вредных веществ.
Кипячение в течение 30 мин. применяется при местном водоснабжении и вызывает на только гибель вегетативных форм, которая наступает уже при 800С в течение 30 сек., но и спор микроорганизмов.
Обеззараживание воды коротковолновым УФ-излучением (=250-260 нм) за счет фотохимического расщепления белковых компонентов мембран бактериальных клеток, вибрионов и яиц гельминтов вызывает быструю гибель вегетативных форм и спор микроорганизмов, вирусов и яиц гельминтов, устойчивых к хлору. Ограничение - метод не используется для воды с высокой мутностью, цветностью и содержащей соли железа.
Реагентные методы обеззараживания воды: обработка ионами серебра, озонирование, хлорирование.
Обработка ионами серебра приводит к инактивации ферментов протоплазмы бактериальных клеток, потери способности к размножению и постепенной гибели. Серебрение воды может осуществляться разными способами: фильтрацией воды через песок, обработанный солями серебра; электролизом воды с серебряным анодом в течение 2-х часов, что ведет к переходу катионов серебра в воду. Преимуществом метода является долгое хранение посеребренной воды. Ограничение - метод не используется для воды с большим содержанием взвешенных органических веществ и ионов хлора.
Озонирование основано на окислении органических веществ и других загрязнений воды озоном О3 - аллотропной модификацией кислорода, обладающим более высоким окислительным потенциалом и в 15 раз большей растворимостью. Озон в большей степени расходуется на окисление органических и легко окисляющихся неорганических веществ, чем обеззараживание. Время, необходимое для обеззараживания озоном, составляет 1-2 мин. Применяемая доза озона составляет 0,5-0,6 мг/л. Обязательным условием озонирования является создание остаточного количества озона в воде (0,1-0,3 мг/л) для предотвращения роста и размножения патогенных микроорганизмов. Преимуществом метода является отсутствие остаточных веществ, дезодорирование воды, удаление цветности, короткое время реакции и уничтожение вирусов. Однако метод требует дешевых источников электроэнергии, поскольку озоновоздушную смесь получают при помощи энергоёмкого процесса - "тихого" электрического разряда на озонаторе.
Хлорирование – наиболее доступный и дешевый способ обеззараживания. Хлорирующие агенты делят на 2 класса: 1) анион Cl- (газообразный Cl2, хлорамин, хлорамины Б и Т, дихлорамины Б или Т); 2) т.н. "активный хлор" - гипохлорит-ион = анион ClO- [гипохлорит кальция Ca(OCl)2, гипохлорит натрия NaOCl, хлорная известь – смесь гипохлорита кальция, хлорида кальция, гидроокиси кальция и воды]. Бактерицидный эффект объясняется действием хлорноватистой кислоты, образующейся по реакции Cl2 + H2O HOCl + HCl; активного хлора: HOCl OCl- + H+ и хлористой кислоты НСlO2. Механизм обеззараживания связан с взаимодействием активных веществ с SH-белками клеточной оболочки бактерий. Недостатки метода: при хлорировании споры сибирской язвы, возбудители туберкулеза, яйца и личинки гельминтов, цисты амебы и риккетсии Бернета остаются жизнеспособными.
Обеззараживание воды хлорированием требует предварительного экспериментального определения концентрации активного хлора в хлорирующем препарате (в норме 25-35%) и хлорпоглощаемости воды, которая зависит от степени загрязнения воды органическими веществами и микроорганизмами, на окисление и обеззараживание которых расходуется хлор.
Условиями эффективного хлорирования являются соблюдение продолжительности контакта хлор-агента с водой и ее компонентами (30 мин. в теплый и жаркий период года, 60 мин. – в холодный); создание остаточного хлора 0,3-0,5 мг/л. Хлорпоглощаемость воды и концентрация остаточного хлора в сумме представляют собой хлорпотребность воды.
Ограничение применения обеззараживания воды препаратами, содержащими «активный хлор», касается воды, загрязненной промышленными сточными водами с содержанием фенола и других ароматических соединений, что требует «постпереломного» хлорирования, ведущего к образованию хлордиоксинов - веществ, обладающих высокой токсичностью и кумулятивностью в организме человека. Признаком их образования является сильный «аптечный» запах воды. Для предотвращения образования хлордиоксидов при хлорировании загрязненной промышленными стоками воды применяют газообразный хлор с преаммонизацией (предварительной обработкой воды аммиаком).
При невозможности экспериментального определения хлорпоглощаемости воды используют метод перехлорирования. Перехлорирование проводят избыточными дозами хлорирующего препарата (обычно в непроточной воде ограниченного объема). При выборе дозы активного хлора учитывают тип и степень загрязненности воды в источнике водоснабжения и эпидемическую ситуацию на территории сбора воды в используемый источник (обычно доза колеблется в пределах 10-20 мг активного хлора на 1 литр воды).
Для получения воды питьевого качества применяются методы очистки (осветления), обеззараживания и специальной обработки с применением реагентов. Остаточные количества реагентов и образующихся в процессе обработки воды веществ гигиенически нормированы (табл.).
Таблица 33. ПДК остаточных количеств реагентов в вде
Показатели
|
Единицы измерения
|
Нормативы (ПДК)
|
Показатель вредности
|
Класс опасности
|
Хлор1):
|
|
|
|
|
Остаточный свободный
|
мг/л
|
От 0,3 до 0,5
|
Органолепт.
|
3
|
Остаточный связанный
|
-"-
|
От 0,8 до 1,2
|
-"-
|
3
|
Хлороформ (при хлорировании воды)
|
-"-
|
0,22)
|
Сан-токс.
|
2
|
Озон остаточный3)
|
-"-
|
0,3
|
Органолепт.
|
-
|
Формальдегид (при озонировании воды)
|
-"-
|
0,05
|
Сан-токс.
|
2
|
Полиакриламид
|
-"-
|
2,0
|
-"-
|
2
|
Активированная кремнекислота (по Si)
|
-"-
|
10
|
-"-
|
2
|
Полифосфаты (по PO3-4)
|
-"-
|
3,5
|
Органолепт.
|
3
|
Алюминийсодержащие коагулянты
|
-"-
|
0,5
|
Сан-токс.
|
2
|
Железосодержащие коагулянты
|
-"-
|
0,1
|
Органолепт.
|
3
|
Специальные методы улучшения качества воды
Специальные методы улучшения качества питьевой воды: умягчение, обезжелезивание, опреснение, дегазация, фторирование, дефторирование и дезактивация.
Способы умягчения жесткой воды (более 200 жесткости): 1). Кипячение (устраняется карбонатная жесткость); 2). Добавление извести (устраняется карбонатная жесткость), 3). Коагуляция с последующей фильтрацией (устраняется карбонатная жесткость): Al2(SO4)3 + Ca(HCO3)2 = 2Al(OH)3 + 3CaSO4 + 6CO2; 4). Добавление соды (некарбонатная жесткость переводится в карбонатную с последующим удалением карбонатной), 5). Фильтрация через ионообменные смолы (катионитный фильтр) – т.н. "глубокое умягчение" за счет обмена катионов кальция и магния на катионы водорода, натрия и пр.16
Способы обезжелезивания воды, содержащей ионы железа в концентрации превышающей ПДК = 0,3 мг/л, основаны на окислении железа растворимых солей до Fe3+ и образования нерастворимого в воде соединения Fe(OH)3. В качестве окислителей используют кислород воздуха или хлор, насыщая воду барботированием17 окислителя или разбрызгиванием (аэрацией18) воды.
Опреснение (удаление избытка минеральных солей) применяют для морской воды, содержащей ионы Cl-, Na+, SO42-, Mg2+, а также Ca2+, K+, и горько-соленой воды, содержащих помимо избытка хлоридов избыток сульфатов в концентрации более 500 мг/л и встречающихся в регионах с высокой засоленностью почв в степной, полупустынной и пустынной зоне.
Основные способы опреснения: 1). Перегонка (дистилляция) морской или соленой воды с содержанием солей более 10 г/л – получение дистиллята с последующим добавлением известковых солей до нормальной концентрации, характерной для питьевой воды; 2). Электродиализ соленой воды с содержанием солей 2,5-10 г/л; 3). Гиперфильтрация (обратный осмос) воды с содержанием солей 2,5-10 г/л; 4). Фильтрация соленой воды с содержанием солей менее 2,5 г/л через ионообменные смолы; 5). Вымораживание соленой воды с содержанием солей менее 2,5 г/л, основанное на разнице температуры замерзания чистой воды и рассола.
Дегазация применяется для воды, насыщенной вредными или плохо пахнущими газами – сероводородом H2S, метаном СН4, углекислым газом CO2, радоном и другими. Наиболее приемлемым способом дегазации является аэрация, осуществляемая барботированием воздуха через воду или разбрызгиванием воды.
Фторирование применяется для воды с концентрацией фторидов <1 мг/л (в зонах с холодным и умеренным климатом), <0,5-0,6 мг/л (в зонах с теплым и жарким климатом) в регионах с высокой заболеваемостью (более 25%) кариесом зубов. Фторирование воды исключает другие способы введения фтора в организм. Основной способ фторирования питьевой воды – добавление наиболее дешевых, хорошо растворимых в воде, нетоксичных и не содержащих вредных примесей фторида натрия NaF, кремнефтористого натрия Na2SiF6 или аммония (NH4)2SiF6. На водопроводных станциях соединения фтора вводят в воду после коагуляции, отстаивания и фильтрации; при использовании артезианской воды – в резервуар для хранения чистой воды.
Дефторирование применяется для воды, содержащей фториды в концентрации более 1,5 мг/л (в зонах с холодным и умеренным климатом) и более 1,2 мг/л (в зонах с теплым и жарким климатом). Повышенное содержание фторидов питьевой воде наблюдается, как правило, при местном водоснабжении, в областях недавно действующих вулканов и там, где почва богата соединениями F (виллиомит NaF, флюорит и плавиковый шпат CaF, селлаит – MgF2, фтор-апатит - 3Ca3(PO4)2Ca(F,Cl)2). Потребление питьевой воды, растительной и животной пищи с повышенным содержанием фтористых соединений ведет к задержке солей фтора в костях зубов с замещением растворимых солей кальция на нерастворимые соединения кальция и фтора. Эндемический флюороз является системным заболеванием, при котором изменяется структура костной ткани (остеосклероз), приводящая к деформации костей. Появление непрозрачных пятен на эмали зубов (признак флюороза) имеет место при превышении содержания фтора в зубной эмали в 3-5 раз. Частота флюороза значительно увеличивается при концентрации фторидов в питьевой воде 2 ppb (мг/л), общий флюороз с кальцификацией связок наблюдается при 8 ppb. Дефторирование является основной организационно-технической профилактической мерой, направленной на предупреждение эндемического флюороза зубов в геохимических провинциях с заболеваемостью эндемическим флюорозом.
Способы дефторирования: 1). Смешение воды из разных источников, характеризующихся повышенным (вода из местных источников водоснабжения) и пониженным (привозная вода) содержанием фторидов;
2). Коагуляция сульфатом алюминия с последующим отстаиванием в течение 4-6 часов до полного осаждения хлопьев; 3). Фильтрация через активную окись алюминия Al2O3; 4). Фильтрация через анионообменные смолы с целью замещения F- на другие анионы.
Дезактивация применяется для воды, загрязненной радиоактивными изотопами химических элементов, и базируется как на дистилляции воды, так и других способах в зависимости от природы и степени радиоактивного загрязнения.
Лабораторная работа
</1>
|